ﻻ يوجد ملخص باللغة العربية
We present here the Calar Alto Schmidt-Lemaitre Telescope (CASTLE) concept, a technology demonstrator for curved detectors, that will be installed at the Calar Alto Observatory (Spain). This telescope has a wide field of view (2.36x1.56 deg^2) and a design, optimised to generate a Point Spread Function with very low level wings and reduced ghost features, which makes it considerably less susceptible to several systematic effects usually affecting similar systems. These characteristics are particularly suited to study the low surface brightness Universe. CASTLE will be able to reach surface brightness orders of magnitude fainter than the sky background level and observe the extremely extended and faint features around galaxies such as tidal features, stellar halos, intra-cluster light, etc. CASTLE will also be used to search and detect astrophysical transients such as gamma ray bursts (GRB), gravitational wave optical counterparts, neutrino counterparts, etc. This will increase the number of precisely localized GRBs from 20% to 60% (in the case of Fermi/GMB GRBs).
We present the concept of BlueMUSE, a blue-optimised, medium spectral resolution, panoramic integral field spectrograph based on the MUSE concept and proposed for the Very Large Telescope. With an optimised transmission down to 350 nm, a larger FoV (
MAORY is the Adaptive Optic (AO) module that will be installed at the E-ELT at the first light of the telescope. It will provide two different types of AO correction, a very high correction over a small FoV (diameter ~10 arcsec, SCAO mode) and a mode
THESEUS is a space mission concept aimed at exploiting Gamma-Ray Bursts for investigating the early Universe and at providing a substantial advancement of multi-messenger and time-domain astrophysics. These goals will be achieved through a unique com
Optical long-baseline interferometry is a unique and powerful technique for astronomical research. Since 2004, optical interferometers have produced an increasing number of scientific papers covering various fields of astrophysics. As current interfe
We present the various science cases for building Band 1 receivers as part of ALMAs ongoing Development Program. We describe the new frequency range for Band 1 of 35-52 GHz, a range chosen to maximize the receiver suites scientific impact. We first d