ﻻ يوجد ملخص باللغة العربية
We studied the filament structures and dense cores in OMC-2,3 region in Orion A North molecular cloud using the high-resolution N2H+ (1-0) spectral cube observed with the Atacama Large Millimeter/Submillimeter Array (ALMA). The filament network over a total length of 2 pc is found to contain 170 intersections and 128 candidate dense cores. The dense cores are all displaced from the infrared point sources (possible young stars), and the major fraction of cores (103) are located around the intersections. Towards the intersections, there is also an increasing trend for the total column density Ntot as well as the the power-law index of the column-density Probability Distribution Function (N-PDF), suggesting that the intersections would in general have more significant gas assembly than the other part of the filament paths. The virial analysis shows that the dense cores mostly have virial mass ratio of alpha_vir=M_vir/M_gas<1.0, suggesting them to be bounded by the self gravity. In the mean time, only about 23 percent of the cores have critical mass ratio of alpha_crit=M_crit/M_gas<1.0, suggesting them to be unstable against core collapse. Combining these results, it shows that the major fraction of the cold starless and possible prestellar cores in OMC-2,3 are being assembled around the intersections, and currently in a gravitationally bound state. But more extensive core collapse and star formation may still require continuous core-mass growth or other perturbatio
We quantify the spatial distributions of dense cores in three spatially distinct areas of the Orion B star-forming region. For L1622, NGC2068/NGC2071 and NGC2023/NGC2024 we measure the amount of spatial substructure using the $mathcal{Q}$-parameter a
Recent surveys of the Galactic plane in the dust continuum and CO emission lines reveal that large ($gtrsim 50$~pc) and massive ($gtrsim 10^5$~$M_odot$) filaments, know as giant molecular filaments (GMFs), may be linked to galactic dynamics and trace
Filaments are key for star formation models. As part of the study carried out by the Herschel GCC Programme, here we study the filament properties presented in GCC.VII in context with theoretical models of filament formation and evolution. A conserva
A unique filament is identified in the {it Herschel} maps of the Orion A giant molecular cloud. The filament, which, we name the Stick, is ruler-straight and at an early evolutionary stage. Transverse position-velocity diagrams show two velocity comp
We use gas temperature and velocity dispersion data from the Green Bank Ammonia Survey and core masses and sizes from the James Clerk Maxwell Telescope Gould Belt Survey to estimate the virial states of dense cores within the Orion A molecular cloud.