ﻻ يوجد ملخص باللغة العربية
A variety of nickel oxide compounds have long been studied for their manifestation of various correlated electron phenomena. Recently, superconductivity was observed in nanoscale infinite layer nickelate thin films of Nd$_{0.8}$Sr$_{0.2}$NiO$_2$, epitaxially stabilized on SrTiO$_3$ substrates via topotactic reduction from the perovskite precursor phase. Here we present the synthesis and properties of PrNiO$_2$ thin films on SrTiO$_3$. Upon doping in Pr$_{0.8}$Sr$_{0.2}$NiO$_2$, we observe superconductivity with a transition temperature of 7-12 K, and robust critical current density at 2 K of 334 kA/cm$^2$. These findings indicate that superconductivity in the infinite layer nickelates is relatively insensitive to the details of the rare earth 4$f$ configuration. Furthermore, they motivate the exploration of a broader family of compounds based on two-dimensional NiO$_2$ planes, which will enable systematic investigation of the superconducting and normal state properties and their underlying mechanisms.
We report the phase diagram of infinite layer Pr$_{1-x}$Sr$_{x}$NiO$_2$ thin films synthesized via topotactic reduction from the perovskite precursor phase using CaH$_2$. Based on the electrical transport properties, we find a doping-dependent superc
To understand the superconductivity recently discovered in Nd$_{0.8}$Sr$_{0.2}$NiO$_2$, we carried out LDA+DMFT (local density approximation plus dynamical mean-field theory) and magnetic force response calculations. The on-site correlation in Ni-$3d
The recent observation of superconductivity in thin film infinite-layer nickelates$^{1-3}$ offers a different angle to investigate superconductivity in layered oxides$^{4}$. A wide range of candidate models have been proposed$^{5-10}$, emphasizing si
The recent observation of superconductivity in infinite-layer nickelate Nd$_{0.8}$Sr$_{0.2}$NiO$_{2}$ has received considerable attention. Despite the many efforts to understand the superconductivity in infinite-layer nickelates, a consensus on the u
Rare-earth nickelates with the infinite-layer crystal structure have been synthesized in thin film and powder form via topotactic oxygen reduction of the perovskite phase. The infinite-layer phase exhibits remarkable properties, such as superconducti