ترغب بنشر مسار تعليمي؟ اضغط هنا

Is this an Early Stage Merger? A Case Study on Molecular Gas and Star Formation Properties of Arp 240

118   0   0.0 ( 0 )
 نشر من قبل Hao He
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present new high resolution $^{12}$CO $J$=1-0, $J$=2-1, and $^{13}$CO $J$=1-0 maps of the early stage merger Arp 240 (NGC5257/8) obtained with the Atacama Large Millimeter/submillimeter Array (ALMA). Simulations in the literature suggest that the merger has just completed its first passage; however, we find that this system has a lower global gas fraction but a higher star formation efficiency compared to typical close galaxy pairs, which suggests that this system may already be in an advanced merger stage. We combine the ALMA data with $^{12}$CO $J$=3-2 observations from the Submillimeter Array and carry out RADEX modeling on several different regions. Both the RADEX modeling and a local thermal equilibrium (LTE) analysis show that the regions are most likely to have a CO-to-H$_2$ conversion factor $alpha_{mathrm{CO}}$ close to or perhaps even smaller than the typical value for (ultra-)luminous infrared galaxies. Using 33 GHz data from the Very Large Array to measure the star formation rate, we find that most star forming regions have molecular gas depletion times of less than 100 Myr. We calculated the star formation efficiency (SFE) per free-fall time for different regions and find some regions appear to have values greater than 100%. We find these regions generally show evidence for young massive clusters (YMCs). After exploring various factors, we argue that this is mainly due to the fact that radio continuum emission in those regions is dominated by that from YMCs, which results in an overestimate of the SFE per free-fall time.



قيم البحث

اقرأ أيضاً

We used the SPIRE/FTS instrument aboard the Herschel Space Observatory (HSO) to obtain the Spectral Line Energy Distributions (SLEDs) of CO from J=4-3 to J=13-12 of Arp 193 and NGC 6240, two classical merger/starbursts selected from our molecular lin e survey of local Luminous Infrared Galaxies (LIRGs: L_{IR}>=10^{11} L_{sol}). The high-J CO SLEDs are then combined with ground-based low-J CO, {13}CO, HCN, HCO+, CS line data and used to probe the thermal and dynamical states of their large molecular gas reservoirs. We find the two CO SLEDs strongly diverging from J=4-3 onwards, with NGC6240 having a much higher CO line excitation than Arp193, despite their similar low-J CO SLEDs and L_{FIR}/L_{CO,1-0}, L_{HCN}/L_{CO} (J=1-0) ratios (proxies of star formation efficiency and dense gas mass fraction). In Arp193, one of the three most extreme starbursts in the local Universe, the molecular SLEDs indicate a small amount ~(5-15)% of dense gas (n>=10^{4}cm^{-3}) unlike NGC6240 where most of the molecular gas (~(60-70)%) is dense n~(10^4-10^5)cm^{-3}. Strong star-formation feedback can drive this disparity in their dense gas mass fractions, and also induce extreme thermal and dynamical states for the molecular gas.In NGC6240, and to a lesser degree in Arp193, we find large molecular gas masses whose thermal states cannot be maintained by FUV photons from Photon Dominated Regions (PDRs). We argue that this may happen often in metal-rich merger/starbursts, strongly altering the initial conditions of star formation. ALMA can now directly probe these conditions across cosmic epoch, and even probe their deeply dust-enshrouded outcome, the stellar IMF averaged over galactic evolution.
We present the Submillimeter Array observation of the CO J=2-1 transition towards the northern galaxy, ARP 302N, of the early merging system, ARP 302. Our high angular resolution observation reveals the extended spatial distribution of the molecular gas in ARP 302N. We find that the molecular gas has a very asymmetric distribution with two strong concentrations on either side of the center together with a weaker one offset by about 8 kpc to the north. The molecular gas distribution is also found to be consistent with that from the hot dust as traced by the 24 micro continuum emission observed by the Spitzer. The line ratio of CO J=2-1/1-0 is found to vary strongly from about 0.7 near the galaxy center to 0.4 in the outer part of the galaxy. Excitation analysis suggests that the gas density is low, less than 10$^3$ cm$^{-3}$, over the entire galaxy. By fitting the SED of ARP 302N in the far infrared we obtain a dust temperature of $Trm_d$=26-36 K and a dust mass of M$rm _{dust}$=2.0--3.6$times10^8$ M$rm_odot$. The spectral index of the radio continuum is around 0.9. The spatial distribution and spectral index of the radio continuum emission suggests that most of the radio continuum emission is synchrotron emission from the star forming regions at the nucleus and ARP302N-cm. The good spatial correspondance between the 3.6 cm radio continuum emission, the Spitzer 8 & 24 $mu$m data and the high resolution CO J=2-1 observation from the SMA shows that there is the asymmetrical star forming activities in ARP 302N.
We report on the galaxy MACSJ0032-arc at z=3.6314 discovered during the Herschel Lensing snapshot Survey of massive galaxy clusters, and strongly lensed by the cluster MACSJ0032.1+1808. The successful detections of its rest-frame UV, optical, FIR, mi llimeter, and radio continua, and of its CO emission enable us to characterize, for the first time at such a high redshift, the stellar, dust, and molecular gas properties of a compact star-forming galaxy with a size smaller than 2.5 kpc, a fairly low stellar mass of 4.8x10^9 Msun, and a moderate IR luminosity of 4.8x10^11 Lsun. We find that the bulk of the molecular gas mass and star formation seems to be spatially decoupled from the rest-frame UV emission. About 90% of the total star formation rate is undetected at rest-frame UV wavelengths because of severe obscuration by dust, but is seen through the thermal FIR dust emission and the radio synchrotron radiation. The observed CO(4-3) and CO(6-5) lines demonstrate that high-J transitions, at least up to J=6, remain excited in this galaxy, whose CO spectral line energy distribution resembles that of high-redshift submm galaxies, even though the IR luminosity of MACSJ0032-arc is ten times lower. This high CO excitation is possibly due to the compactness of the galaxy. We find evidence that this high CO excitation has to be considered in the balance when estimating the CO-to-H2 conversion factor. The inferred depletion time of the molecular gas in MACSJ0032-arc supports the decrease in the gas depletion timescale of galaxies with redshift, although to a lesser degree than predicted by galaxy evolution models. Instead, the measured molecular gas fraction as high as 60-79% in MACSJ0032-arc favors the continued increase in the gas fraction of galaxies with redshift as expected, despite the plateau observed between z~1.5 and z~2.5.
110 - D. Espada , S. Martin , S. Verley 2018
Mergers of galaxies are an important mode for galaxy evolution because they serve as an efficient trigger of powerful starbursts. However, observational studies of the molecular gas properties during their early stages are scarce. We present interfer ometric CO(2-1) maps of two luminous infrared galaxies (LIRGs), NGC 3110 and NGC 232, obtained with the Submillimeter Array (SMA) with ~ 1 kpc resolution. While NGC 3110 is a spiral galaxy interacting with a minor (14:1 stellar mass) companion, NGC 232 is interacting with a similarly sized object. We find that such interactions have likely induced in these galaxies enhancements in the molecular gas content and central concentrations, partly at the expense of atomic gas. The obtained molecular gas surface densities in their circumnuclear regions are $Sigma_{rm mol}~gtrsim10^{2.5}$ M$_odot$ pc$^{-2}$, higher than in non-interacting objects by an order of magnitude. Gas depletion times of ~ 0.5 - 1 Gyr are found for the different regions, lying in between non-interacting disk galaxies and the starburst sequence. In the case of NGC 3110, the spiral arms show on average 0.5 dex shorter depletion times than in the circumnuclear regions if we assume a similar H$_2$-CO conversion factor. We show that even in the early stages of the interaction with a minor companion, a starburst is formed along the circumnuclear region and spiral arms, where a large population of SSCs is found (~350), and at the same time a large central gas concentration is building up which might be the fuel for an active galactic nucleus. The main morphological properties of the NGC 3110 system are reproduced by our numerical simulations and allow us to estimate that the current epoch of the interaction is at ~ 150 Myrs after closest approach.
We present < 1 kpc resolution CO imaging study of 37 optically-selected local merger remnants using new and archival interferometric maps obtained with ALMA, CARMA, SMA and PdBI. We supplement a sub-sample with single-dish measurements obtained at th e NRO 45 m telescope for estimating the molecular gas mass (10^7 - 10^11 M_sun), and evaluating the missing flux of the interferometric measurements. Among the sources with robust CO detections, we find that 80 % (24/30) of the sample show kinematical signatures of rotating molecular gas disks (including nuclear rings) in their velocity fields, and the sizes of these disks vary significantly from 1.1 kpc to 9.3 kpc. The size of the molecular gas disks in 54 % of the sources is more compact than the K-band effective radius. These small gas disks may have formed from a past gas inflow that was triggered by a dynamical instability during a potential merging event. On the other hand, the rest (46 %) of the sources have gas disks which are extended relative to the stellar component, possibly forming a late-type galaxy with a central stellar bulge. Our new compilation of observational data suggests that nuclear and extended molecular gas disks are common in the final stages of mergers. This finding is consistent with recent major-merger simulations of gas rich progenitor disks. Finally, we suggest that some of the rotation-supported turbulent disks observed at high redshifts may result from galaxies that have experienced a recent major merger.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا