ترغب بنشر مسار تعليمي؟ اضغط هنا

CO emission in distant galaxies on and above the main sequence

93   0   0.0 ( 0 )
 نشر من قبل Francesco Valentino
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the detection of multiple CO line transitions with ALMA in a few tens of infrared-selected galaxies on and above the main sequence at z=1.1-1.7. We reliably detected the emission of CO(5-4), CO(2-1), and CO(7-6)+[CI](2-1) in 50, 33, and 13 galaxies, respectively, and we complemented this information with available CO(4-3) and [CI](1-0) fluxes for part of the sample, and modeling of the optical-to-mm SEDs. We retrieve a quasi-linear relation between LIR and CO(5-4) or CO(7-6) for main-sequence galaxies and starbursts, corroborating the hypothesis that these transitions can be used as SFR tracers. We find the CO excitation to steadily increase as a function of the star formation efficiency, the mean intensity of the radiation field warming the dust, the surface density of SFR, and, less distinctly, with the distance from the main sequence. This adds to the tentative evidence for higher excitation of the CO+[CI] SLED of starbursts relative to that for main-sequence objects, where the dust opacities play a minor role in shaping the high-J CO transitions in our sample. However, the distinction between the average SLED of upper main-sequence and starburst galaxies is blurred, driven by a wide variety of intrinsic shapes. LVG radiative transfer modeling demonstrates the existence of a highly excited component that elevates the CO SLED of high-redshift main-sequence and starbursting galaxies above the typical values observed in the disk of the Milky Way. This excited component is dense and it encloses ~50% of the total molecular gas mass in main-sequence objects. We interpret the observed trends involving the CO excitation as mainly driven by a combination of large SFRs and compact sizes, naturally connected with enhanced dense molecular gas fractions and higher dust and gas temperatures, due to increasing UV radiation fields, cosmic ray rates, and dust/gas coupling. [Abridged]


قيم البحث

اقرأ أيضاً

160 - J. Wagg , M. Aravena , D. Brisbin 2020
We present Herschel-PACS spectroscopy of four main-sequence star-forming galaxies at z~1.5. We detect [OI]63micron line emission in BzK-21000 at z=1.5213, and measure a line luminosity, L([OI]63micron) = (3.9+/-0.7)x1.E+9 Lsun. Our PDR modelling of t he interstellar medium in BzK-21000 suggests a UV radiation field strength, G~320 G0, and gas density, n~1800 cm-3, consistent with previous LVG modelling of the molecular CO line excitation. The other three targets in our sample are individually undetected in these data, and we perform a spectral stacking analysis which yields a detection of their average emission and an [OI]63micron line luminosity, L([OI]63micron) =(1.1+/-0.2)x1E+9 Lsun. We find that the implied luminosity ratio, L([OI]63micron)/L(IR), of the undetected BzK-selected star-forming galaxies broadly agrees with that of low-redshift star-forming galaxies, while BzK-21000 has a similar ratio to that of a dusty star-forming galaxy at z~6. The high [OI]63micron line luminosities observed in BzK-21000 and the $z sim 1 -3$ dusty and submm luminous star-forming galaxies may be associated with extended reservoirs of low density, cool neutral gas.
The Halo Assembly in Lambda-CDM: Observations in 7 Dimensions (HALO7D) dataset consists of Keck II/DEIMOS spectroscopy and Hubble Space Telescope-measured proper motions of Milky Way (MW) halo main sequence turnoff stars in the CANDELS fields. In thi s paper, the second in the HALO7D series, we present the proper motions for the HALO7D sample. We discuss our measurement methodology, which makes use of a Bayesian mixture modeling approach for creating the stationary reference frame of distant galaxies. Using the 3D kinematic HALO7D sample, we estimate the parameters of the halo velocity ellipsoid, $langle v_{phi} rangle, sigma_r, sigma_{phi}, sigma_{theta}$, and the velocity anisotropy $beta$. Using the full HALO7D sample, we find $beta=0.63 pm 0.05$ at $langle r rangle =24$ kpc. We also estimate the ellipsoid parameters for our sample split into three apparent magnitude bins; the posterior medians for these estimates of $beta$, while consistent with one another, increase as a function of mean sample distance. Finally, we estimate $beta$ in each of the individual HALO7D fields. We find that the velocity anisotropy $beta$ can vary from field to field, which suggests that the halo is not phase mixed at $langle r rangle =24$ kpc. We explore the $beta$ variation across the skies of two stellar halos from the textit{Latte} suite of FIRE-2 simulations, finding that both simulated galaxies show $beta$ variation over a similar range to the variation observed across the four HALO7D fields. The accretion histories of the two simulated galaxies result in different $beta$ variation patterns; spatially mapping $beta$ is thus a way forward in characterizing the accretion history of the Galaxy.
89 - A. Obreja 2014
Using cosmological galaxy simulations from the MaGICC project, we study the evolution of the stellar masses, star formation rates and gas phase abundances of star forming galaxies. We derive the stellar masses and star formation rates using observati onal relations based on spectral energy distributions by applying the new radiative transfer code GRASIL-3D to our simulated galaxies. The simulations match well the evolution of the stellar mass-halo mass relation, have a star forming main sequence that maintains a constant slope out to redshift z $sim$ 2, and populate projections of the stellar mass - star formation - metallicity plane, similar to observed star forming disc galaxies. We discuss small differences between these projections in observational data and in simulations, and the possible causes for the discrepancies. The light-weighted stellar masses are in good agreement with the simulation values, the differences between the two varying between 0.06 dex and 0.20 dex. We also find a good agreement between the star formation rate tracer and the true (time-averaged) simulation star formation rates. Regardless if we use mass- or light-weighted quantities, our simulations indicate that bursty star formation cycles can account for the scatter in the star forming main sequence.
We compare observed far infra-red/sub-millimetre (FIR/sub-mm) galaxy spectral energy distributions (SEDs) of massive galaxies ($M_{star}gtrsim10^{10}$ $h^{-1}$M$_{odot}$) derived through a stacking analysis with predictions from a new model of galaxy formation. The FIR SEDs of the model galaxies are calculated using a self-consistent model for the absorption and re-emission of radiation by interstellar dust based on radiative transfer calculations and global energy balance arguments. Galaxies are selected based on their position on the specific star formation rate (sSFR) - stellar mass ($M_{star}$) plane. We identify a main sequence of star-forming galaxies in the model, i.e. a well defined relationship between sSFR and $M_star$, up to redshift $zsim6$. The scatter of this relationship evolves such that it is generally larger at higher stellar masses and higher redshifts. There is remarkable agreement between the predicted and observed average SEDs across a broad range of redshifts ($0.5lesssim zlesssim4$) for galaxies on the main sequence. However, the agreement is less good for starburst galaxies at $zgtrsim2$, selected here to have elevated sSFRs$>10times$ the main sequence value. We find that the predicted average SEDs are robust to changing the parameters of our dust model within physically plausible values. We also show that the dust temperature evolution of main sequence galaxies in the model is driven by star formation on the main sequence being more burst-dominated at higher redshifts.
Galaxy internal structure growth has long been accused of inhibiting star formation in disc galaxies. We investigate the potential physical connection between the growth of dispersion-supported stellar structures (e.g. classical bulges) and the posit ion of galaxies on the star-forming main sequence at $zsim0$. Combining the might of the SAMI and MaNGA galaxy surveys, we measure the $lambda_{Re}$ spin parameter for 3781 galaxies over $9.5 < log M_{star} [rm{M}_{odot}] < 12$. At all stellar masses, galaxies at the locus of the main sequence possess $lambda_{Re}$ values indicative of intrinsically flattened discs. However, above $log M_{star}[rm{M}_{odot}]sim10.5$ where the main sequence starts bending, we find tantalising evidence for an increase in the number of galaxies with dispersion-supported structures, perhaps suggesting a connection between bulges and the bending of the main sequence. Moving above the main sequence, we see no evidence of any change in the typical spin parameter in galaxies once gravitationally-interacting systems are excluded from the sample. Similarly, up to 1 dex below the main sequence, $lambda_{Re}$ remains roughly constant and only at very high stellar masses ($log M_{star}[rm{M}_{odot}]>11$), do we see a rapid decrease in $lambda_{Re}$ once galaxies decline in star formation activity. If this trend is confirmed, it would be indicative of different quenching mechanisms acting on high- and low-mass galaxies. The results suggest that while a population of galaxies possessing some dispersion-supported structure is already present on the star-forming main sequence, further growth would be required after the galaxy has quenched to match the kinematic properties observed in passive galaxies at $zsim0$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا