ترغب بنشر مسار تعليمي؟ اضغط هنا

A 20-Gbps Beam-steered Infrared Wireless Link Enabled by a Passively Field-programmable Metasurface

77   0   0.0 ( 0 )
 نشر من قبل Jianou Huang
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Beam steering is one of the main challenges in energy-efficient and high-speed infrared light communication. To date, active beam-steering schemes based on a spatial light modulator (SLM) or micro-electrical mechanical system (MEMS) mirror, as well as the passive ones based on diffractive gratings, have been demonstrated for infrared light communication. Here, for the first time to our knowledge, an infrared beam is steered by 35{deg} on one side empowered by a passively field-programmable metasurface. By combining the centralized control of wavelength and polarization, a remote passive metasurface can steer the infrared beam in a remote access point. The proposed system keeps scalability to support multiple beams, flexibility to steer the beam, high optical efficiency, simple and cheap devices on remote sides, and centralized control (low maintenance cost), while it avoids disadvantages such as grating loss, a small coverage area, and a bulky size. Based on the proposed beam-steering technology, we also demonstrated a proof-of-concept experiment system with a data rate of 20 Gbps.



قيم البحث

اقرأ أيضاً

We investigate the possibility to model a metasurface, defined as a zero-thickness sheet of surface polarization currents, by a thin slab, characterized by a subwavelength thickness and usual voluminal medium parameters. First, we elaborate a general equivalence relation between the metasurface and the slab in terms of average electromagnetic fields. Then, we derive exact relations between the metasurface and slab susceptibilities and validate them by full-wave simulations. Finally, we discuss the simple and insightful Average Field Approximation (AFA) formula, illustrate its inappropriate for strong metasurface field transformations, and establish its range of validity. All of these developments are restricted to the simplest case of a uniform isotropic metasurface under normal plane wave incidence. We conclude from the complexity of the equivalence for this case, that a metasurface is generally best modeled in terms of Generalized Sheet Transition Conditions (GSTCs).
In this letter, a wireless transmitter using the new architecture of programmable metasurface is presented. The proposed transmitter does not require any filter, nor wideband mixer or wideband power amplifier, thereby making it a promising hardware a rchitecture for cost-effective wireless communications systems in the future. Using experimental results, we demonstrate that a programmable metasurface-based 8-phase shift-keying (8PSK) transmitter with 8*32 phase adjustable unit cells can achieve 6.144 Mbps data rate over the air at 4.25 GHz with a comparable bit error rate (BER) performance as the conventional approach without channel coding, but with less hardware complexity.
Metasurfaces have drawn significant attentions due to their superior capability in tailoring electromagnetic waves with a wide frequency range, from microwave to visible light. Recently, programmable metasurfaces have demonstrated the ability of mani pulating the amplitude or phase of electromagnetic waves in a programmable manner in real time, which renders them especially appealing in the applications of wireless communications. To practically demonstrate the feasibility of programmable metasurfaces in future communication systems, in this paper, we design and realize a novel metasurface-based wireless communication system. By exploiting the dynamically controllable property of programmable metasurface, we firstly introduce the fundamental principle of the metasurface-based wireless communication system design. We then present the design, implementation and experimental evaluation of the proposed metasurface-based wireless communication system with a prototype, which realizes single carrier quadrature phase shift keying (QPSK) transmission over the air. In the developed prototype, the phase of the reflected electromagnetic wave of programmable metasurface is directly manipulated in real time according to the baseband control signal, which achieves 2.048 Mbps data transfer rate with video streaming transmission over the air. Experimental result is provided to compare the performance of the proposed metasurface-based architecture against the conventional one. With the slight increase of the transmit power by 5 dB, the same bit error rate (BER) performance can be achieved as the conventional system in the absence of channel coding. Such a result is encouraging considering that the metasurface-based system has the advantages of low hardware cost and simple structure, thus leading to a promising new architecture for wireless communications.
122 - Yuhan Li , Faxiang Qin , Le Quan 2019
Interface constitutes a significant volume fraction in nanocomposites, and it requires the ability to tune and tailor interfaces to tap the full potential of nanocomposites. However, the development and optimization of nanocomposites is currently res tricted by the limited exploration and utilization of interfaces at different length scales. In this research, we have designed and introduced a relatively large-scale vertical interphase into carbon nanocomposites, in which the dielectric response and dispersion features in microwave frequency range are successfully adjusted. A remarkable relaxation process has been observed in vertical-interphase nanocomposites, showing sensitivity to both filler loading and the discrepancy in polarization ability across the interphase. Together with our analyses on dielectric spectra and relaxation processes, it is suggested that the intrinsic effect of vertical interphase lies in its ability to constrain and localize heterogeneous charges under external fields. Following this logic, systematic research is presented in this article affording to realize tunable frequency-dependent dielectric functionality by means of vertical interphase engineering. Overall, this study provides a novel method to utilize interfacial effects rationally. The research approach demonstrated here has great potential in developing microwave dielectric nanocomposites and devices with targeted or unique performance such as tunable broadband absorbers.
Besides being a source of energy, light can also cool gases of atoms down to the lowest temperatures ever measured, where atomic motion almost stops. The research field of cold atoms has emerged as a multidisciplinary one, highly relevant, e.g., for precision measurements, quantum gases, simulations of many-body physics, and atom optics. In this focus article, we present the field as seen in 2015, and emphasise the fundamental role in its development that has been played by mastering.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا