ترغب بنشر مسار تعليمي؟ اضغط هنا

Charting Lattice Thermal Conductivity of Inorganic Crystals

75   0   0.0 ( 0 )
 نشر من قبل Taishan Zhu
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Thermal conductivity is a fundamental material property but challenging to predict, with less than 5% out of about $10^5$ synthesized inorganic materials being documented. In this work, we extract the structural chemistry that governs lattice thermal conductivity, by combining graph neural networks and random forest approaches. We show that both mean and variation of unit-cell configurational properties, such as atomic volume and bond length, are the most important features, followed by mass and elemental electronegativity. We chart the structural chemistry of lattice thermal conductivity into extended van-Arkel triangles, and predict the thermal conductivity of all known inorganic materials in the Inorganic Crystal Structure Database. For the latter, we develop a transfer learning framework extendable for other applications.

قيم البحث

اقرأ أيضاً

The transparent semiconductor In$_{2}$O$_{3}$ is a technologically important material. It combines optical transparency in the visible frequency range and sizeable electric conductivity. We present a study of thermal conductivity of In$_{2}$O$_{3}$ c rystals and find that around 20 K, it peaks to a value as high as 5,000 WK$^{-1}$m$^{-1}$, comparable to the peak thermal conductivity in silicon and exceeded only by a handful of insulators. The amplitude of the peak drastically decreases in presence of a type of disorder, which does not simply correlate with the density of mobile electrons. Annealing enhances the ceiling of the phonon mean free path. Samples with the highest thermal conductivity are those annealed in the presence of hydrogen. Above 100 K, thermal conductivity becomes sample independent. In this intrinsic regime, dominated by phonon-phonon scattering, the magnitude of thermal diffusivity, $D$ becomes comparable to many other oxides, and its temperature dependence evolves towards $T^{-1}$. The ratio of $D$ to the square of sound velocity yields a scattering time which obeys the expected scaling with the Planckian time.
We report a study of magnetism and magnetic transitions of hexagonal ErMnO$_3$ single crystals by magnetization, specific heat and heat transport measurements. Magnetization data show that the $c$-axis magnetic field induces three magnetic transition s at 0.8, 12 and 28 T. The specific heat shows a peak at 2.2 K, which is due to a magnetic transition of Er$^{3+}$ moments. For low-$T$ thermal conductivity ($kappa$), a clear dip-like feature appears in $kappa(H)$ isotherm at 1--1.25 T for $H parallel ab$; while in the case of $H parallel c$, a step-like increase is observed at 0.5--0.8 T. The transition fields in $kappa(H)$ are in good agreement with those obtained from magnetization, and the anomaly of $kappa$ can be understood by a spin-phonon scattering scenario. The natures of magnetic structures and corresponding field-induced transitions at low temperatures are discussed.
We present a first-principles theoretical approach for evaluating the lattice thermal conductivity based on the exact solution of the Boltzmann transport equation. We use the variational principle and the conjugate gradient scheme, which provide us w ith an algorithm faster than the one previously used in literature and able to always converge to the exact solution. Three-phonon normal and umklapp collision, isotope scattering and border effects are rigorously treated in the calculation. Good agreement with experimental data for diamond is found. Moreover we show that by growing more enriched diamond samples it is possible to achieve values of thermal conductivity up to three times larger than the commonly observed in isotopically enriched diamond samples with 99.93% C12 and 0.07 C13.
162 - Jiangang He , Yi Xia , Wenwen Lin 2021
Semiconductors with very low lattice thermal conductivities are highly desired for applications relevant to thermal energy conversion and management, such as thermoelectrics and thermal barrier coatings. Although the crystal structure and chemical bo nding are known to play vital roles in shaping heat transfer behavior, material design approaches of lowering lattice thermal conductivity using chemical bonding principles are uncommon. In this work, we present an effective strategy of weakening interatomic interactions and therefore suppressing lattice thermal conductivity based on chemical bonding principles and develop a high-efficiency approach of discovering low $kappa_{rm L}$ materials by screening the local coordination environments of crystalline compounds. The followed first-principles calculations uncover 30 hitherto unexplored compounds with (ultra)low lattice thermal conductivities from thirteen prototype crystal structures contained in the inorganic crystal structure database. Furthermore, we demonstrate an approach of rationally designing high-performance thermoelectrics by additionally incorporating cations with stereochemically active lone-pair electrons. Our results not only provide fundamental insights into the physical origin of the low lattice thermal conductivity in a large family of copper-based compounds but also offer an efficient approach to discovery and design materials with targeted thermal transport properties.
We unify two prevailing theories of thermal quenching (TQ) in rare-earth-activated inorganic phosphors - the cross-over and auto-ionization mechanisms - into a single predictive model. Crucially, we have developed computable descriptors for activator environment stability from ab initio molecular dynamics simulations to predict TQ under the cross-over mechanism, which can be augmented by a band gap calculation to account for auto-ionization. The resulting TQ model predicts the experimental TQ in 29 known phosphors to within ~ 3-8%. Finally, we have developed an efficient topological approach to rapidly screen vast chemical spaces for the discovery of novel, thermally robust phosphors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا