ترغب بنشر مسار تعليمي؟ اضغط هنا

PraNet: Parallel Reverse Attention Network for Polyp Segmentation

268   0   0.0 ( 0 )
 نشر من قبل Huazhu Fu
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Colonoscopy is an effective technique for detecting colorectal polyps, which are highly related to colorectal cancer. In clinical practice, segmenting polyps from colonoscopy images is of great importance since it provides valuable information for diagnosis and surgery. However, accurate polyp segmentation is a challenging task, for two major reasons: (i) the same type of polyps has a diversity of size, color and texture; and (ii) the boundary between a polyp and its surrounding mucosa is not sharp. To address these challenges, we propose a parallel reverse attention network (PraNet) for accurate polyp segmentation in colonoscopy images. Specifically, we first aggregate the features in high-level layers using a parallel partial decoder (PPD). Based on the combined feature, we then generate a global map as the initial guidance area for the following components. In addition, we mine the boundary cues using a reverse attention (RA) module, which is able to establish the relationship between areas and boundary cues. Thanks to the recurrent cooperation mechanism between areas and boundaries, our PraNet is capable of calibrating any misaligned predictions, improving the segmentation accuracy. Quantitative and qualitative evaluations on five challenging datasets across six metrics show that our PraNet improves the segmentation accuracy significantly, and presents a number of advantages in terms of generalizability, and real-time segmentation efficiency.



قيم البحث

اقرأ أيضاً

Colonoscopy is the gold standard for examination and detection of colorectal polyps. Localization and delineation of polyps can play a vital role in treatment (e.g., surgical planning) and prognostic decision making. Polyp segmentation can provide de tailed boundary information for clinical analysis. Convolutional neural networks have improved the performance in colonoscopy. However, polyps usually possess various challenges, such as intra-and inter-class variation and noise. While manual labeling for polyp assessment requires time from experts and is prone to human error (e.g., missed lesions), an automated, accurate, and fast segmentation can improve the quality of delineated lesion boundaries and reduce missed rate. The Endotect challenge provides an opportunity to benchmark computer vision methods by training on the publicly available Hyperkvasir and testing on a separate unseen dataset. In this paper, we propose a novel architecture called ``DDANet based on a dual decoder attention network. Our experiments demonstrate that the model trained on the Kvasir-SEG dataset and tested on an unseen dataset achieves a dice coefficient of 0.7874, mIoU of 0.7010, recall of 0.7987, and a precision of 0.8577, demonstrating the generalization ability of our model.
90 - Jun Wei , Yiwen Hu , Ruimao Zhang 2021
Accurate polyp segmentation is of great importance for colorectal cancer diagnosis. However, even with a powerful deep neural network, there still exists three big challenges that impede the development of polyp segmentation. (i) Samples collected un der different conditions show inconsistent colors, causing the feature distribution gap and overfitting issue; (ii) Due to repeated feature downsampling, small polyps are easily degraded; (iii) Foreground and background pixels are imbalanced, leading to a biased training. To address the above issues, we propose the Shallow Attention Network (SANet) for polyp segmentation. Specifically, to eliminate the effects of color, we design the color exchange operation to decouple the image contents and colors, and force the model to focus more on the target shape and structure. Furthermore, to enhance the segmentation quality of small polyps, we propose the shallow attention module to filter out the background noise of shallow features. Thanks to the high resolution of shallow features, small polyps can be preserved correctly. In addition, to ease the severe pixel imbalance for small polyps, we propose a probability correction strategy (PCS) during the inference phase. Note that even though PCS is not involved in the training phase, it can still work well on a biased model and consistently improve the segmentation performance. Quantitative and qualitative experimental results on five challenging benchmarks confirm that our proposed SANet outperforms previous state-of-the-art methods by a large margin and achieves a speed about 72FPS.
Learning structural information is critical for producing an ideal result in retinal image segmentation. Recently, convolutional neural networks have shown a powerful ability to extract effective representations. However, convolutional and pooling op erations filter out some useful structural information. In this paper, we propose an Attention Guided Network (AG-Net) to preserve the structural information and guide the expanding operation. In our AG-Net, the guided filter is exploited as a structure sensitive expanding path to transfer structural information from previous feature maps, and an attention block is introduced to exclude the noise and reduce the negative influence of background further. The extensive experiments on two retinal image segmentation tasks (i.e., blood vessel segmentation, optic disc and cup segmentation) demonstrate the effectiveness of our proposed method.
This paper aims to contribute in bench-marking the automatic polyp segmentation problem using generative adversarial networks framework. Perceiving the problem as an image-to-image translation task, conditional generative adversarial networks are uti lized to generate masks conditioned by the images as inputs. Both generator and discriminator are convolution neural networks based. The model achieved 0.4382 on Jaccard index and 0.611 as F2 score.
Existing video polyp segmentation (VPS) models typically employ convolutional neural networks (CNNs) to extract features. However, due to their limited receptive fields, CNNs can not fully exploit the global temporal and spatial information in succes sive video frames, resulting in false-positive segmentation results. In this paper, we propose the novel PNS-Net (Progressively Normalized Self-attention Network), which can efficiently learn representations from polyp videos with real-time speed (~140fps) on a single RTX 2080 GPU and no post-processing. Our PNS-Net is based solely on a basic normalized self-attention block, equipping with recurrence and CNNs entirely. Experiments on challenging VPS datasets demonstrate that the proposed PNS-Net achieves state-of-the-art performance. We also conduct extensive experiments to study the effectiveness of the channel split, soft-attention, and progressive learning strategy. We find that our PNS-Net works well under different settings, making it a promising solution to the VPS task.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا