ترغب بنشر مسار تعليمي؟ اضغط هنا

First principles modeling of exciton-polaritons in polydiacetylene chains

67   0   0.0 ( 0 )
 نشر من قبل Antonios Alvertis
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Exciton-polaritons in organic materials are hybrid states that result from the strong interaction of photons and the bound excitons that these materials host. Organic polaritons hold great interest for optoelectronic applications, however progress towards this end has been impeded by the lack of a first principles approach that quantifies light-matter interactions in these systems, and which would allow the formulation of molecular design rules. Here we develop such a first principles approach, quantifying light-matter interactions. We exemplify our approach by studying variants of the conjugated polymer polydiacetylene, and we show that a large polymer conjugation length is critical towards strong exciton-photon coupling, hence underlying the importance of pure structures without static disorder. By comparing to our experimental reflectivity measurements, we show that the coupling of excitons to vibrations, manifested by phonon side bands in the absorption, has a strong impact on the magnitude of light-matter coupling over a range of frequencies. Our approach opens the way towards a deeper understanding of polaritons in organic materials, and we highlight that a quantitatively accurate calculation of the exciton-photon interaction would require accounting for all sources of disorder self-consistently.



قيم البحث

اقرأ أيضاً

Organic semiconductors exhibit properties of individual molecules and extended crystals simultaneously. The strongly bound excitons they host are typically described in the molecular limit, but excitons can delocalize over many molecules, raising the question of how important the extended crystalline nature is. Using accurate Greens function based methods for the electronic structure and non-perturbative finite difference methods for exciton-vibration coupling, we describe exciton interactions with molecular and crystal degrees of freedom concurrently. We find that the degree of exciton delocalization controls these interactions, with thermally activated crystal phonons predominantly coupling to delocalized states, and molecular quantum fluctuations predominantly coupling to localized states. Based on this picture, we quantitatively predict and interpret the temperature and pressure dependence of excitonic peaks in the acene series of organic semiconductors, which we confirm experimentally, and we develop a simple experimental protocol for probing exciton delocalization. Overall, we provide a unified picture of exciton delocalization and vibrational effects in organic semiconductors, reconciling the complementary views of finite molecular clusters and periodic molecular solids.
Finite-temperature Kohn--Sham density-functional theory (KS-DFT) is a widely-used method in warm dense matter (WDM) simulations and diagnostics. Unfortunately, full KS-DFT-molecular dynamics models scale unfavourably with temperature and there remain s uncertainty regarding the performance of existing approximate exchange-correlation (XC) functionals under WDM conditions. Of particular concern is the expected explicit dependence of the XC functional on temperature, which is absent from most approximations. Average-atom (AA) models, which significantly reduce the computational cost of KS-DFT calculations, have therefore become an integral part of WDM modelling. In this paper, we present a derivation of a first-principles AA model from the fully-interacting many-body Hamiltonian, carefully analysing the assumptions made and terms neglected in this reduction. We explore the impact of different choices within this model -- such as boundary conditions and XC functionals -- on common properties in WDM, for example equation-of-state data. Furthermore, drawing upon insights from ground-state KS-DFT, we speculate on likely sources of error in KS-AA models and possible strategies for mitigating against such errors.
The theoretical understanding of plasmon behavior is crucial for an accurate interpretation of inelastic scattering diagnostics in many experiments. We highlight the utility of linear-response time-dependent density functional theory (LR-TDDFT) as a first-principles framework for consistently modeling plasmon properties. We provide a comprehensive analysis of plasmons in aluminum from ambient to warm dense matter conditions and assess typical properties such as the dynamical structure factor, the plasmon dispersion, and the plasmon lifetime. We compare our results with scattering measurements and with other TDDFT results as well as models such as the random phase approximation, the Mermin approach, and the dielectric function obtained using static local field corrections of the uniform electron gas parametrized from path integral Monte Carlo simulations. We conclude that results for the plasmon dispersion and lifetime are inconsistent between experiment and theories and that the common practice of extracting and studying plasmon dispersion relations is an insufficient procedure to capture the complicated physics contained in the dynamic structure factor in its full breadth.
Paramagnetic molecules can show long spin-coherence times, which make them good candidates as quantum bits. Reducing the efficiency of the spin-phonon interaction is the primary challenge towards achieving long coherence times over a wide temperature range in soft molecular lattices. The lack of a microscopic understanding about the role of vibrations in spin relaxation strongly undermines the possibility to chemically design better performing molecular qubits. Here we report a first-principles characterization of the main mechanism contributing to the spin-phonon coupling for a class of vanadium(IV) molecular qubits. Post Hartree Fock and Density Functional Theory are used to determine the effect of both reticular and intra-molecular vibrations on the modulation of the Zeeman energy for four molecules showing different coordination geometries and ligands. This comparative study provides the first insight into the role played by coordination geometry and ligand field strength in determining the spin-lattice relaxation time of molecular qubits, opening the avenue to a rational design of new compounds.
Liquid metals at extreme pressures and temperatures are widely interested in the high-pressure community. Based on density functional theory molecular dynamics, we conduct first-principles investigations on the equation of state (EOS) and structures of four metals (Cu, Fe, Pb, and Sn) at 1.5--5 megabar conditions and 5$times10^3$--4$times10^4$ K. Our first-principles EOS data enable evaluating the performance of four EOS models in predicting Hugoniot densities and temperatures of the four systems. We find the melting temperature of Cu is 1000--2000 K higher and shows a similar Clapeyron slope, in comparison to those of Fe. Our structure, coordination number, and diffusivity analysis indicates all the four liquid metals form similar simple close-packed structures. Our results set theoretical benchmarks for EOS development and structures of metals in their liquid states and under dynamic compression.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا