ﻻ يوجد ملخص باللغة العربية
We propose a scheme to realize optical nonreciprocal response and conversion in a Tavis-Cummings coupling optomechanical system, where a single cavity mode interacts with the vibrational mode of a flexible membrane with an embedded ensemble of two-level quantum emitters. Due to the introduction of the Tavis-Cummings interaction, we find that the phases between the mechanical mode and the optical mode, as well as between the mechanical mode and the dopant mode, are correlated with each other, and further give the analytical relationship between them. By optimizing the system parameters, especially the relative phase between two paths, the optimal nonreciprocal response can be achieved. Under the frequency domain, we derive the transmission matrix of the system analytically based on the input-output relation and study the influence of the system parameters on the nonreciprocal response of the quantum input signal. Moreover, compared with the conventional optomechanical systems, the Tavis-Cummings coupling optomechanical system exhibits richer nonreciprocal conversion phenomena among the optical mode, mechanical mode, and dopant mode, which provide a new applicable way of achieving the phonon-photon transducer and the optomechanical circulator in future practice.
Photon blockade is an effective way to generate single photon, which is of great significance in quantum state preparation and quantum information processing. Here we investigate the statistical properties of photons in a double-cavity optomechanical
We present the analytical solution of the Tavis-Cummings (TC) model for more than one qubit inhomogeneously coupled to a single mode radiation field beyond the rotating-wave approximation (RWA). The significant advantage of the displaced oscillator b
We propose to manipulate the statistic properties of the photons transport nonreciprocally via quadratic optomechanical coupling. We present a scheme to generate quadratic optomechanical interactions in the normal optical modes of a whispering-galler
We theoretically study the conditions under which two laser fields can undergo Coherent Perfect Absorption (CPA) when shined on a single-mode bi-directional optical cavity coupled with two two- level quantum emitters (natural atoms, artificial atoms,
We study the nonreciprocal transmission and the fast-slow light effects in a cavity optomechanical system, in which the cavity supports a clockwise and a counter-clockwise circulating optical modes, both the two modes are driven simultaneously by a s