ﻻ يوجد ملخص باللغة العربية
We report observations with the Atacama Large Millimetre Array (ALMA) of six submillimetre galaxies (SMGs) within 3 arcmin of the Distant Red Core (DRC) at $z=4.0$, a site of intense cluster-scale star formation, first reported by Oteo et al. (2018). We find new members of DRC in three SMG fields; in two fields, the SMGs are shown to lie along the line of sight towards DRC; one SMG is spurious. Although at first sight this rate of association is consistent with earlier predictions, associations with the bright SMGs are rarer than expected, which suggests caution when interpreting continuum over-densities. We consider the implications of all 14 confirmed DRC components passing simultaneously through an active phase of star formation. In the simplest explanation, we see only the tip of the iceberg in terms of star formation and gas available for future star formation, consistent with our remarkable finding that the majority of newly confirmed DRC galaxies are not the brightest continuum emitters in their immediate vicinity. Thus while ALMA continuum follow-up of SMGs identifies the brightest continuum emitters in each field, it does not necessarily reveal all the gas-rich galaxies. To hunt effectively for protocluster members requires wide and deep spectral-line imaging to uncover any relatively continuum-faint galaxies that are rich in atomic or molecular gas. Searching with short-baseline arrays or single-dish facilities, the true scale of the underlying gas reservoirs may be revealed.
We study the core mass function (CMF) of the massive protocluster G286.21+0.17 with the Atacama Large Millimeter/submillimeter Array via 1.3~mm continuum emission at a resolution of 1.0arcsec (2500~au). We have mapped a field of 5.3arcmin$times$5.3ar
Fragmentation of massive dense molecular clouds is the starting point in the formation of rich clusters and massive stars. Theory and numerical simulations indicate that the population of the fragments (number, mass, diameter, separation) resulting f
We present 1.05 mm ALMA observations of the deeply embedded high-mass protocluster G11.92-0.61, designed to search for low-mass cores within the accretion reservoir of the massive protostars. Our ALMA mosaic, which covers an extent of ~0.7 pc at sub-
The gas content of galaxies is a key factor for their growth, starting from star formation and black hole accretion to galaxy mergers. Thus, characterising its properties via observations of tracers like the CO emission line is of big importance in o
We report the results of $1^{prime}.5 times3^{prime}$ mapping at 1.1~mm with the Atacama Large Millimeter/submillimeter Array (ALMA) toward the central region of the $z=3.09$ SSA22 protocluster. By combining our source catalog with archival spectrosc