ترغب بنشر مسار تعليمي؟ اضغط هنا

Electronic structure of a Si-containing topological Dirac semimetal CaAl2Si2

122   0   0.0 ( 0 )
 نشر من قبل Zhongkai Liu
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

There has been an upsurge in the discovery of topological quantum materials, where various topological insulators and semimetals have been theoretically predicted and experimentally observed. However, only very few of them contains silicon, the most widely used element in electronic industry. Recently, ternary compound CaAl2Si2 has been predicted to be a topological Dirac semimetal, hosting Lorentz-symmetry-violating quasiparticles with a strongly tilted conical band dispersion. In this work, by using high-resolution angle-resolved photoemission spectroscopy (ARPES), we investigated the comprehensive electronic structure of CaAl2Si2. A pair of topological Dirac crossings is observed along the kz direction, in good agreement with the ab initio calculations, confirming the topological Dirac semimetal nature of the compound. Our study expands the topological material family on Si-containing compounds, which have great application potential in realizing low-cost, nontoxic electronic device with topological quantum states.



قيم البحث

اقرأ أيضاً

395 - Z. K. Liu , B. Zhou , Z. J. Wang 2013
Three-dimensional (3D) topological Dirac semimetals (TDSs) represent a novel state of quantum matter that can be viewed as 3D graphene. In contrast to two-dimensional (2D) Dirac fermions in graphene or on the surface of 3D topological insulators, TDS s possess 3D Dirac fermions in the bulk. The TDS is also an important boundary state mediating numerous novel quantum states, such as topological insulators, Weyl semi-metals, Axion insulators and topological superconductors. By investigating the electronic structure of Na3Bi with angle resolved photoemission spectroscopy, we discovered 3D Dirac fermions with linear dispersions along all momentum directions for the first time. Furthermore, we demonstrated that the 3D Dirac fermions in Na3Bi were protected by the bulk crystal symmetry. Our results establish that Na3Bi is the first model system of 3D TDSs, which can also serve as an ideal platform for the systematic study of quantum phase transitions between rich novel topological quantum states.
We experimentally measure the band dispersions of topological Dirac semimetal Na3Bi using Fourier-transform scanning tunneling spectroscopy to image quasiparticle interference on the (001) surface of molecular-beam epitaxy-grown Na3Bi thin films. We find that the velocities for the lowest-lying conduction and valencebands are 1.6x10^6 m/s and 4.2x10^5 m/s respectively, significantly higher than previous theoreticalpredictions. We compare the experimental band dispersions to the theoretical band structures calculated usingan increasing hierarchy of approximations of self-energy corrections due to interactions: generalized gradientapproximation (GGA), meta-GGA, Heyd-Scuseria-Ernzerhof exchange-correlation functional (HSE06), and GW methods. We find that density functional theory methods generally underestimate the electron velocities. However, we find significantly improved agreement with an increasingly sophisticated description of the exchange and interaction potential, culminating in reasonable agreement with experiments obtained by the GW method. The results indicate that exchange-correlation effects are important in determining the electronicstructure of this Na3Bi, and are likely the origin of the high velocity. The electron velocity is consistent withrecent experiments on ultrathin Na3Bi and also may explain the ultrahigh carrier mobility observed in heavilyelectron-doped Na3Bi.
71 - Yongping Du , Feng Tang , Di Wang 2016
Topological semimetals recently stimulate intense research activities. Combining first-principles calculations and effective model analysis, we predict that CaTe is topological node-line semimetal when spin-orbit coupling (SOC) is ignored. We also ob tain the nearly flat surface state which has the drumhead characteristic. When SOC is included, three node lines evolve into a pair of Dirac points along the $M-R$ line. These Dirac points are robust and protected by $C_{4}$ rotation symmetry. Once this crystal symmetry is broken, the Dirac points will be eliminated, and the system becomes a strong topological insulator.
Large-area thin films of topological Dirac semimetal Na$_3$Bi are grown on amorphous SiO$_2$:Si substrates to realise a field-effect transistor with the doped Si acting as back gate. As-grown films show charge carrier mobilities exceeding 7,000 cm$^2 $/Vs and carrier densities below 3 $times $10$^{18}$ cm$^{-3}$, comparable to the best thin-film Na$_3$Bi. An ambipolar field effect and minimum conductivity are observed, characteristic of Dirac electronic systems. The results are quantitatively understood within a model of disorder-induced charge inhomogeneity in topological Dirac semimetals. Due to the inverted band structure, the hole mobility is significantly larger than the electron mobility in Na$_3$Bi, and when present, these holes dominate the transport properties.
The notion of topological phases has been extended to higher-order and has been generalized to different dimensions. As a paradigm, Cd3As2 is predicted to be a higher-order topological semimetal, possessing three-dimensional (3D) bulk Dirac fermions, two-dimensional (2D) Fermi arcs, and one-dimensional (1D) hinge states. These topological states have different characteristic length scales in electronic transport, allowing to distinguish their properties when changing sample size. Here, we report an anomalous dimensional reduction of supercurrent transport by increasing the size of Dirac semimetal Cd3As2-based Josephson junctions. An evolution of the supercurrent quantum interferences from a standard Fraunhofer pattern to a superconducting quantum interference device (SQUID)-like one is observed when the junction channel length is increased. The SQUID-like interference pattern indicates the supercurrent flowing through the 1D hinges. The identification of 1D hinge states should be valuable for deeper understanding the higher-order topological phase in a 3D Dirac semimetal.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا