ﻻ يوجد ملخص باللغة العربية
We present and analyze two regularized finite difference methods which preserve energy of the logarithmic Klein-Gordon equation (LogKGE). In order to avoid singularity caused by the logarithmic nonlinearity of the LogKGE, we propose a regularized logarithmic Klein-Gordon equation (RLogKGE) with a small regulation parameter $0<varepsilonll1$ to approximate the LogKGE with the convergence order $O(varepsilon)$. By adopting the energy method, the inverse inequality, and the cut-off technique of the nonlinearity to bound the numerical solution, the error bound $O(h^{2}+frac{tau^{2}}{varepsilon^{2}})$ of the two schemes with the mesh size $h$, the time step $tau$ and the parameter $varepsilon$. Numerical results are reported to support our conclusions.
We propose and analyze two regularized finite difference methods for the logarithmic Klein-Gordon equation (LogKGE). Due to the blowup phenomena caused by the logarithmic nonlinearity of the LogKGE, it is difficult to construct numerical schemes and
We consider the nonlinear Klein-Gordon equation in $R^d$. We call multi-solitary waves a solution behaving at large time as a sum of boosted standing waves. Our main result is the existence of such multi-solitary waves, provided the composing boosted
This article resolves some errors in the paper Scattering threshold for the focusing nonlinear Klein-Gordon equation, Analysis & PDE 4 (2011) no. 3, 405-460. The errors are in the energy-critical cases in two and higher dimensions.
We establish probabilistic small data global well-posedness of the energy-critical Maxwell-Klein-Gordon equation relative to the Coulomb gauge for scaling super-critical random initial data. The proof relies on an induction on frequency procedure and
We prove global well-posedness for the 3D Klein-Gordon equation with a concentrated nonlinearity.