ترغب بنشر مسار تعليمي؟ اضغط هنا

Detection and control of single proton spins in a thin layer of diamond grown by chemical vapor deposition

94   0   0.0 ( 0 )
 نشر من قبل Eisuke Abe
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report detection and coherent control of a single proton nuclear spin using an electronic spin of the nitrogen-vacancy (NV) center in diamond as a quantum sensor. In addition to determining the NV-proton hyperfine parameters by employing multipulse sequences, we polarize and coherently rotate the single proton spin, and detect an induced free precession. Observation of free induction decays is an essential ingredient for high resolution proton nuclear magnetic resonance, and the present work extends it to the atomic scale. We also discuss the origin of the proton as incorporation during chemical vapor deposition growth, which provides an opportunity to use protons in diamond as built-in quantum memories coupled with the NV center.



قيم البحث

اقرأ أيضاً

Spin defects in silicon carbide have exceptional electron spin coherence with a near-infrared spin-photon interface in a material amenable to modern semiconductor fabrication. Leveraging these advantages, we successfully integrate highly coherent sin gle neutral divacancy spins in commercially available p-i-n structures and fabricate diodes to modulate the local electrical environment of the defects. These devices enable deterministic charge state control and broad Stark shift tuning exceeding 850 GHz. Surprisingly, we show that charge depletion results in a narrowing of the optical linewidths by over 50 fold, approaching the lifetime limit. These results demonstrate a method for mitigating the ubiquitous problem of spectral diffusion in solid-state emitters by engineering the electrical environment while utilizing classical semiconductor devices to control scalable spin-based quantum systems.
Molybdenum disulfide (MoS2) is a particularly interesting member of the family of two-dimensional (2D) materials due to its semiconducting and tunable electronic properties. Currently, the most reliable method for obtaining high-quality industrial sc ale amounts of 2D materials is chemical vapor deposition (CVD), which results in polycrystalline samples. As grain boundaries (GBs) are intrinsic defect lines within CVD-grown 2D materials, their atomic structure is of paramount importance. Here, through atomic-scale analysis of micrometer-long GBs, we show that covalently bound boundaries in 2D MoS2 tend to be decorated by nanopores. Such boundaries occur when differently oriented MoS2 grains merge during growth, whereas the overlap of grains leads to boundaries with bilayer areas. Our results suggest that the nanopore formation is related to stress release in areas with a high concentration of dislocation cores at the grain boundaries, and that the interlayer interaction leads to intrinsic rippling at the overlap regions. This provides insights for the controlled fabrication of large-scale MoS 2 samples with desired structural properties for applications.
Nanomagnetometry using the nitrogen-vacancy (NV) centre in diamond has attracted a great deal of interest because of the combined features of room temperature operation, nanoscale resolution and high sensitivity. One of the important goals for nano-m agnetometry is to be able to detect nanoscale nuclear magnetic resonance (NMR) in individual molecules. Our theoretical analysis shows how a single molecule at the surface of diamond, with characteristic NMR frequencies, can be detected using a proximate NV centre on a time scale of order seconds with nanometer precision. We perform spatio-temporal resolution optimisation and also outline paths to greater sensitivity. In addition, the method is suitable for application in low and relatively inhomogeneous background magnetic fields in contrast to both conventional liquid and solid state NMR spectroscopy.
A significant advance toward achieving practical applications of graphene as a two-dimensional material in nanoelectronics would be provided by successful synthesis of both n-type and p-type doped graphene. However reliable doping and a thorough unde rstanding of carrier transport in the presence of charged impurities governed by ionized donors or acceptors in the graphene lattice are still lacking. Here we report experimental realization of few-layer nitrogen-doped (N-doped) graphene sheets by chemical vapor deposition of organic molecule 1, 3, 5-triazine on Cu metal catalyst. By reducing the growth temperature, the atomic percentage of nitrogen doping is raised from 2.1 % to 5.6 %. With increasing doping concentration, N-doped graphene sheet exhibits a crossover from p-type to n-type behavior accompanied by a strong enhancement of electron-hole transport asymmetry, manifesting the influence of incorporated nitrogen impurities. In addition, by analyzing the data of X-ray photoelectron spectroscopy, Raman spectroscopy, and electrical measurements, we show that pyridinic and pyrrolic N impurities play an important role in determining the transport behavior of carriers in N-doped graphene sheets.
We introduce a novel nanofabrication technique to directly deposit catalyst pads for the chemical vapor deposition synthesis of single-walled carbon nanotubes (SWCNTs) at any desired position on a substrate by Gallium focused ion beam (FIB) induced d eposition of silicon oxide thin films from the metalorganic Tetraethyl orthosilicate (TEOS) precursor. A high resolution in the positioning of the SWCNTs is naturally achieved as the imaging and deposition by FIB are conducted concurrently in situ at the same selected point on the substrate. This technique has substantial advantages over the current state-of-the-art methods that are based on complex and multistep lithography processes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا