ترغب بنشر مسار تعليمي؟ اضغط هنا

Common Envelope Wind Tunnel: Range of Applicability and Self-Similarity in Realistic Stellar Envelopes

71   0   0.0 ( 0 )
 نشر من قبل Rosa Everson
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Common envelope evolution, the key orbital tightening phase of the traditional formation channel for close binaries, is a multistage process that presents many challenges to the establishment of a fully descriptive, predictive theoretical framework. In an approach complementary to global 3D hydrodynamical modeling, we explore the range of applicability for a simplified drag formalism that incorporates the results of local hydrodynamic wind tunnel simulations into a semi-analytical framework in the treatment of the common envelope dynamical inspiral phase using a library of realistic giant branch stellar models across the low, intermediate, and high mass regimes. In terms of a small number of key dimensionless parameters, we characterize a wide range of common envelope events, revealing the broad range of applicability of the drag formalism as well its self-similar nature across mass regimes and ages. Limitations arising from global binary properties and local structural quantities are discussed together with the opportunity for a general prescriptive application for this formalism.



قيم البحث

اقرأ أيضاً

The discovery via gravitational waves of binary black hole systems with total masses greater than $60M_odot$ has raised interesting questions for stellar evolution theory. Among the most promising formation channels for these systems is one involving a common envelope binary containing a low metallicity, core helium burning star with mass $sim 80-90M_odot$ and a black hole with mass $sim 30-40M_odot$. For this channel to be viable, the common envelope binary must eject more than half the giant stars mass and reduce its orbital separation by as much as a factor of 80. We discuss issues faced in numerically simulating the common envelope evolution of such systems and present a 3D AMR simulation of the dynamical inspiral of a low-metallicity red supergiant with a massive black hole companion.
Massive-star binaries can undergo a phase where one of the two stars expands during its advanced evolutionary stage as a giant and envelops its companion, ejecting the hydrogen envelope and tightening its orbit. Such a common envelope phase is requir ed to tighten the binary orbit in the formation of many of the observed X-ray binaries and merging compact binary systems. In the formation scenario for neutron star binaries, the system might pass through a phase where a neutron star spirals into the envelope of its giant star companion. These phases lead to mass accretion onto the neutron star. Accretion onto these common-envelope-phase neutron stars can eject matter that has undergone burning near to the neutron star surface. This paper presents nucleosynthetic yields of this ejected matter, using population synthesis models to study the importance of these nucleosynthetic yields in a galactic chemical evolution context. Depending on the extreme conditions in temperature and density found in the accreted material, both proton-rich and neutron-rich nucleosynthesis can be obtained, with efficient production of neutron rich isotopes of low Z material at the most extreme conditions, and proton rich isotopes, again at low Z, in lower density models. Final yields are found to be extremely sensitive to the physical modeling of the accretion phase. We show that neutron stars accreting in binary common envelopes might be a new relevant site for galactic chemical evolution, and therefore more comprehensive studies are needed to better constrain nucleosynthesis in these objects.
Magnetic fields of order $10^1-10^2$ gauss that are present in the envelopes of red giant stars are ejected in common envelope scenarios. These fields could be responsible for the launching of magnetically driven winds in proto-planetary nebulae. Usi ng 2D simulations of magnetized winds interacting with an envelope drawn from a 3D simulation of the common envelope phase, we study the confinement, heating, and magnetic field development of post-common envelope winds. We find that the ejected magnetic field can be enhanced via compression by factors up to $sim 10^4$ in circumbinary disks during the self-regulated phases. We find values for the kinetic energy of the order of $10^{46}$ erg that explain the large values inferred in proto-planetary nebula outflows. We show that the interaction of the formed circumbinary disk with a spherical, stellar wind produces a tapered flow that is almost indistinguishable from an imposed tapered flow. This increases the uncertainty of the origin of proto-planetary nebula winds, which could be either stellar, circumstellar (stellar accretion disk), circumbinary (circumbinary accretion disk), or a combination of all three. Within this framework, a scenario for self-collimation of weakly magnetized winds is discussed, which can explain the two objects where the collimation process is observationally resolved, HD 101584 and Hen 3-1475. An explanation for the equatorial, molecular hydrogen emission in CRL 2688 is also presented.
We present a new model describing the evolution of triple stars which undergo common envelope evolution, using a combination of analytic and numerical techniques. The early stages of evolution are driven by dynamical friction with the envelope, which causes the outer triple orbit to shrink faster than the inner binary. In most cases, this leads to a chaotic dynamical interaction between the three stars, culminating in the ejection of one of the stars from the triple. This ejection and resulting recoil on the remnant binary are sufficient to eject all three stars from the envelope, which expands and dissipates after the stars have escaped. These results have implications for the properties of post-common envelope triples: they may only exist in cases where the envelope was ejected before the onset of dynamical instability, the likelihood of which depends on the initial binary separation and the envelope structure. In cases where the triple becomes dynamically unstable, the triple does not survive and the envelope dissipates without forming a planetary nebula.
Binary systems undergoing unstable Roche Lobe overflow spill gas into their circumbinary environment as their orbits decay toward coalescence. In this paper, we use a suite of hydrodynamic models of coalescing binaries involving an extended donor and a more compact accretor. We focus on the period of unstable Roche Lobe overflow that ends as the accretor plunges within the envelope of the donor at the onset of a common envelope phase. During this stage, mass is removed from the donor and flung into the circumbinary environment. Across a wide range of binary mass ratios, we find that the mass expelled as the separation decreases from the Roche limit to the donors original radius is of the order of 25% of the accretors mass. We study the kinematics of this ejecta and its dependencies on binary properties and find that it assembles into a toroidal circumbinary distribution. These circumbinary tori have approximately constant specific angular momentum due to momentum transport by spiral shocks launched from the orbiting binary. We show that an analytic model with these torus properties captures many of the main features of the azimuthally-averaged profiles of our hydrodynamic simulations. Our results, in particular the simple relationship between accretor mass and expelled mass and its spatial distribution, may be useful in interpreting stellar coalescence transients like luminous red novae, and in initializing hydrodynamic simulations of the subsequent common envelope phase.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا