ﻻ يوجد ملخص باللغة العربية
We propose a deep learning analyzing technique with convolutional neural network (CNN) to predict the evolutionary track of the Epoch of Reionization (EoR) from the 21-cm differential brightness temperature tomography images. We use 21cmFAST, a fast semi-numerical cosmological 21-cm signal simulator, to produce mock 21-cm maps between $z=6 sim 13$. We then apply two observational effects into those 21-cm maps, such as instrumental noise and limit of (spatial and depth) resolution somewhat suitable for realistic choices of the Square Kilometre Array (SKA). We design our deep learning model with CNN to predict the sliced-averaged neutral hydrogen fraction from the given 21-cm map. The estimated neutral fraction from our CNN model has a great agreement with its true value even after coarsely smoothing with broad beamsize and frequency bandwidth, and also heavily covered by noise with narrow. Our results have shown that deep learning analyzing method has a large potential to efficiently reconstruct the EoR history from the 21-cm tomography surveys in future.
We use morphological descriptors, Betti numbers and Contour Minkowski Tensor (CMT) on 21cm brightness temperature excursion sets, to study the ionization and heating history of the intergalactic medium (IGM) during and before the Epoch of Reionizatio
Simulations estimating the differential brightness temperature of the redshifted 21-cm from the epoch of reionization (EoR) often assume that the spin temperature is decoupled from the background CMB temperature and is much larger than it. Although a
Detection of the redshifted 21cm-line signal from neutral hydrogen in the intergalactic medium (IGM) during the Epoch of Reionization (EoR) is complicated by intense foregrounds such as galactic synchrotron and extragalactic radio galaxies. The 21cm-
We present a study of the impact of a bright quasar on the redshifted 21cm signal during the Epoch of Reionization (EoR). Using three different cosmological radiative transfer simulations, we investigate if quasars are capable of substantially changi
Detecting $rm H_I$ 21cm line in the intergalactic medium (IGM) during the Epoch of Reionization (EoR) suffers from foreground contamination such as Galactic synchrotron and extragalactic radio sources. Cross-correlation between the 21cm line and Lyma