ﻻ يوجد ملخص باللغة العربية
Numerical simulations of massive neutrino cosmologies consistently find a spoon-like feature in the non-linear matter power spectrum ratios of cosmological models that differ only in the neutrino mass fraction f_N. Typically, the ratio approaches unity at low wave numbers k, decreases by ~ 10 f_N at k ~ 1 h/Mpc, and turns up again at large k. Using the halo model of large-scale structure, we show that this spoon feature originates in the transition from the two-halo power spectrum to the one-halo power spectrum. The formers sensitivity to f_N rises with k, while that of the latter decreases with k. The presence of this spoon feature is robust with respect to different choices of the halo mass function and the halo density profile, and does not require any parameter tuning within the halo model. We demonstrate that a standard halo model calculation is already able to predict the depth, width, and position of this spoon as well as its evolution with redshift z with remarkable accuracy. Predictions at z >= 1 can be further improved using non-linear perturbative inputs.
We analytically model the non-linear effects induced by massive neutrinos on the total matter power spectrum using the halo model reaction framework of Cataneo et al. 2019. In this approach the halo model is used to determine the relative change to t
Future or ongoing galaxy redshift surveys can put stringent constraints on neutrinos masses via the high-precision measurements of galaxy power spectrum, when combined with cosmic microwave background (CMB) information. In this paper we develop a met
We use the galaxy angular power spectrum at $zsim0.5-1.2$ from the Canada-France-Hawaii-Telescope Legacy Survey Wide fields (CFHTLS-Wide) to constrain separately the total neutrino mass $sum{m_ u}$ and the effective number of neutrino species $N_{rm{
In the context of forthcoming galaxy surveys, to ensure unbiased constraints on cosmology and gravity when using non-linear structure information, percent-level accuracy is required when modelling the power spectrum. This calls for frameworks that ca
We present the first attempt to analytically study the nonlinear matter power spectrum for a mixed dark matter (cold dark matter plus neutrinos of total mass ~0.1eV) model based on cosmological perturbation theory. The suppression in the power spectr