ترغب بنشر مسار تعليمي؟ اضغط هنا

A Cross-Task Analysis of Text Span Representations

82   0   0.0 ( 0 )
 نشر من قبل Shubham Toshniwal
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Many natural language processing (NLP) tasks involve reasoning with textual spans, including question answering, entity recognition, and coreference resolution. While extensive research has focused on functional architectures for representing words and sentences, there is less work on representing arbitrary spans of text within sentences. In this paper, we conduct a comprehensive empirical evaluation of six span representation methods using eight pretrained language representation models across six tasks, including two tasks that we introduce. We find that, although some simple span representations are fairly reliable across tasks, in general the optimal span representation varies by task, and can also vary within different facets of individual tasks. We also find that the choice of span representation has a bigger impact with a fixed pretrained encoder than with a fine-tuned encoder.

قيم البحث

اقرأ أيضاً

Language modeling tasks, in which words, or word-pieces, are predicted on the basis of a local context, have been very effective for learning word embeddings and context dependent representations of phrases. Motivated by the observation that efforts to code world knowledge into machine readable knowledge bases or human readable encyclopedias tend to be entity-centric, we investigate the use of a fill-in-the-blank task to learn context independent representations of entities from the text contexts in which those entities were mentioned. We show that large scale training of neural models allows us to learn high quality entity representations, and we demonstrate successful results on four domains: (1) existing entity-level typing benchmarks, including a 64% error reduction over previous work on TypeNet (Murty et al., 2018); (2) a novel few-shot category reconstruction task; (3) existing entity linking benchmarks, where we match the state-of-the-art on CoNLL-Aida without linking-specific features and obtain a score of 89.8% on TAC-KBP 2010 without using any alias table, external knowledge base or in domain training data and (4) answering trivia questions, which uniquely identify entities. Our global entity representations encode fine-grained type categories, such as Scottish footballers, and can answer trivia questions such as: Who was the last inmate of Spandau jail in Berlin?
The introduction of pretrained language models has reduced many complex task-specific NLP models to simple lightweight layers. An exception to this trend is coreference resolution, where a sophisticated task-specific model is appended to a pretrained transformer encoder. While highly effective, the model has a very large memory footprint -- primarily due to dynamically-constructed span and span-pair representations -- which hinders the processing of complete documents and the ability to train on multiple instances in a single batch. We introduce a lightweight end-to-end coreference model that removes the dependency on span representations, handcrafted features, and heuristics. Our model performs competitively with the current standard model, while being simpler and more efficient.
74 - Jie Yang , Yue Zhang , Linwei Li 2017
In this paper, we introduce textsc{Yedda}, a lightweight but efficient and comprehensive open-source tool for text span annotation. textsc{Yedda} provides a systematic solution for text span annotation, ranging from collaborative user annotation to a dministrator evaluation and analysis. It overcomes the low efficiency of traditional text annotation tools by annotating entities through both command line and shortcut keys, which are configurable with custom labels. textsc{Yedda} also gives intelligent recommendations by learning the up-to-date annotated text. An administrator client is developed to evaluate annotation quality of multiple annotators and generate detailed comparison report for each annotator pair. Experiments show that the proposed system can reduce the annotation time by half compared with existing annotation tools. And the annotation time can be further compressed by 16.47% through intelligent recommendation.
A significant roadblock in multilingual neural language modeling is the lack of labeled non-English data. One potential method for overcoming this issue is learning cross-lingual text representations that can be used to transfer the performance from training on English tasks to non-English tasks, despite little to no task-specific non-English data. In this paper, we explore a natural setup for learning cross-lingual sentence representations: the dual-encoder. We provide a comprehensive evaluation of our cross-lingual representations on a number of monolingual, cross-lingual, and zero-shot/few-shot learning tasks, and also give an analysis of different learned cross-lingual embedding spaces.
Keyphrases are capable of providing semantic metadata characterizing documents and producing an overview of the content of a document. Since keyphrase extraction is able to facilitate the management, categorization, and retrieval of information, it h as received much attention in recent years. There are three approaches to address keyphrase extraction: (i) traditional two-step ranking method, (ii) sequence labeling and (iii) generation using neural networks. Two-step ranking approach is based on feature engineering, which is labor intensive and domain dependent. Sequence labeling is not able to tackle overlapping phrases. Generation methods (i.e., Sequence-to-sequence neural network models) overcome those shortcomings, so they have been widely studied and gain state-of-the-art performance. However, generation methods can not utilize context information effectively. In this paper, we propose a novelty Span Keyphrase Extraction model that extracts span-based feature representation of keyphrase directly from all the content tokens. In this way, our model obtains representation for each keyphrase and further learns to capture the interaction between keyphrases in one document to get better ranking results. In addition, with the help of tokens, our model is able to extract overlapped keyphrases. Experimental results on the benchmark datasets show that our proposed model outperforms the existing methods by a large margin.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا