ترغب بنشر مسار تعليمي؟ اضغط هنا

Studying the parameters of the extended $sigma$-$omega$ model for neutron star matter

82   0   0.0 ( 0 )
 نشر من قبل David Edwin Alvarez Castillo dr
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this work we study the parameters of the extended $sigma$-$omega$ model for neutron star matter by a Bayesian analysis on state-of-the-art multi-messenger astronomy observations, namely mass, radius and tidal deformabilities. We have considered three parameters of the model, the Landau mass $m_L$, the nuclear compressibility $K_0$, and the value of the symmetry energy $S_0$, all at saturation density $n_0$. As a result, we are able to estimate the values of the Landau mass of f $m_L = 739pm17$ MeV, whereas the values of $K_0$ and $S_0$ fall within already known empirical values. Furthermore, for neutron stars we find the most probable value of 13 km $<R_{1.4}<$ 13.5 km and the upper mass limit of $M_{max} approx 2.2$ M$_{odot}$.

قيم البحث

اقرأ أيضاً

We present a Bayesian analysis of the Landau mass within the extended $sigma$-$omega$ model for neutron star matter. To this purpose, we consider the mass measurement of the object PSR 0740+6620, the tidal deformability estimation from the GW170817 a nd the mass-radius estimate of PSR J0030+0451 by NICER. Using Landau mass as free parameter of the theory, we rely on the prediction power of the Bayesian method to find the best value for this nuclear quantity.
The LIGO/Virgo detection of gravitational waves originating from a neutron-star merger, GW170817, has recently provided new stringent limits on the tidal deformabilities of the stars involved in the collision. Combining this measurement with the exis tence of two-solar-mass stars, we generate a generic family of neutron-star-matter Equations of State (EoSs) that interpolate between state-of-the-art theoretical results at low and high baryon density. Comparing the results to ones obtained without the tidal-deformability constraint, we witness a dramatic reduction in the family of allowed EoSs. Based on our analysis, we conclude that the maximal radius of a 1.4-solar-mass neutron star is 13.6 km, and that smallest allowed tidal deformability of a similar-mass star is $Lambda(1.4 M_odot) = 120$.
There are strong indications that the process of conversion of a neutron star into a strange quark star proceeds as a strong deflagration implying that in a few milliseconds almost the whole star is converted. Starting from the three-dimensional hydr odynamic simulations of the combustion process which provide the temperature profiles inside the newly born strange star, we calculate for the first time the neutrino signal that is to be expected if such a conversion process takes place. The neutrino emission is characterized by a luminosity and a duration that is typical for the signal expected from protoneutron stars and represents therefore a powerful source of neutrinos which could be possibly directly detected in case of events occurring close to our Galaxy. We discuss moreover possible connections between the birth of strange stars and explosive phenomena such as supernovae and gamma-ray-bursts.
The Skyrme model is a low energy, effective field theory for QCD which when coupled to a gravitational field provides an ideal semi-classical model to describe neutron stars. We use the Skyrme crystal solution composed of a lattice of $alpha$-like pa rticles as a building block to construct minimum energy neutron star configurations, allowing the crystal to be strained anisotropically. We find that below 1.49 solar masses the stars crystal deforms isotropically and that above this critical mass, it undergoes anisotropic strain. We then find that the maximum mass allowed for a neutron star is 1.90 solar masses, in close agreement with a recent observation of the most massive neutron star yet found. The radii of the computed solutions also match the experimentally estimated values of approximately 10km.
Dark Matter constitutes most of the matter in the presently accepted cosmological model for our Universe. The extreme conditions of ordinary baryonic matter, namely high density and compactness, in Neutron Stars make these objects suitable to gravita tionally accrete such a massive component provided interaction strength between both, luminous and dark sectors, at current experimental level of sensitivity. We consider several different DM phenomenological models from the myriad of those presently allowed. In this contribution we review astrophysical aspects of interest in the interplay of ordinary matter and a fermionic light Dark Matter component. We focus in the interior nuclear medium in the core and external layers, i.e. the crust, discussing the impact of a novel dark sector in relevant stellar quantities for (heat) energy transport such as thermal conductivity or emissivities.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا