ترغب بنشر مسار تعليمي؟ اضغط هنا

The one that got away: A unique eclipse in the young brown dwarf Roque 12

245   0   0.0 ( 0 )
 نشر من قبل Alexander Scholz
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the discovery of a deep, singular eclipse of the bona fide brown dwarf Roque 12, a substellar member of the Pleiades. The eclipse was 0.65mag deep, lasted 1.3h, and was observed with two telescopes simultaneously in October 2002. No further eclipse was recorded, despite continuous monitoring with Kepler/K2 over 70d in 2015. There is tentative (2sigma) evidence for radial velocity variations of 5km/s, over timescales of three months. The best explanation for the eclipse is the presence of a companion on an eccentric orbit. The observations constrain the eccentricity to e>0.5, the period to P>70d, and the mass of the companion to ~0.001-0.04Msol. In principle it is also possible that the eclipse is caused by circum-sub-stellar material. Future data releases by Gaia and later LSST as well as improved radial velocity constraints may be able to unambiguously confirm the presence of the companion. This would turn the system into one of the very few known eclipsing binary brown dwarfs with known age.

قيم البحث

اقرأ أيضاً

98 - M. C. Schutte 2020
We report the discovery of the youngest brown dwarf with a disk at 102 pc from the Sun, WISEA~J120037.79-784508.3 (W1200-7845), via the Disk Detective citizen science project. We establish that W1200-7845 is located in the 3.7$substack{+4.6 -1.4}$ M yr-old $varepsilon$~Cha association. Its spectral energy distribution (SED) exhibits clear evidence of an infrared (IR) excess, indicative of the presence of a warm circumstellar disk. Modeling this warm disk, we find the data are best fit using a power-law description with a slope $alpha = -0.94$, which suggests it is a young, Class II type disk. Using a single blackbody disk fit, we find $T_{eff, disk} = 521 K$ and $L_{IR}/L_{*} = 0.14$. The near-infrared spectrum of W1200-7845 matches a spectral type of M6.0$gamma pm 0.5$, which corresponds to a low surface gravity object, and lacks distinctive signatures of strong Pa$beta$ or Br$gamma$ accretion. Both our SED fitting and spectral analysis indicate the source is cool ($T_{eff} = $2784-2850 K), with a mass of 42-58 $M_{Jup}$, well within the brown dwarf regime. The proximity of this young brown dwarf disk makes the system an ideal benchmark for investigating the formation and early evolution of brown dwarfs.
76 - B. Riaz , M. Honda , H. Campins 2011
We present a study of the radial distribution of dust species in young brown dwarf disks. Our work is based on a compositional analysis of the 10 and 20 micron silicate emission features for brown dwarfs in the Taurus-Auriga star-forming region. A fu ndamental finding of our work is that brown dwarfs exhibit stronger signs of dust processing in the cold component of the disk, compared to the higher mass T Tauri stars in Taurus. For nearly all of our targets, we find a flat disk structure, which is consistent with the stronger signs of dust processing observed in these disks. For the case of one brown dwarf, 2M04230607, we find the forsterite mass fraction to be a factor of ~3 higher in the outer disk compared to the inner disk region. Simple large-scale radial mixing cannot account for this gradient in the dust chemical composition, and some local crystalline formation mechanism may be effective in this disk. The relatively high abundance of crystalline silicates in the outer cold regions of brown dwarf disks provides an interesting analogy to comets. In this context, we have discussed the applicability of the various mechanisms that have been proposed for comets on the formation and the outward transport of high-temperature material. We also present Chandra X-ray observations for two Taurus brown dwarfs, 2M04414825 and CFHT-BD-Tau 9. We find 2M04414825, which has a ~12% crystalline mass fraction, to be more than an order of magnitude brighter in X-ray than CFHT-BD-Tau 9, which has a ~35% crystalline mass fraction. Combining with previous X-ray data, we find the inner disk crystalline mass fractions to be anti-correlated with the X-ray strength.
We report the discovery of a 61-Jupiter-mass brown dwarf, which transits its F8V host star, WASP-30, every 4.16 days. From a range of age indicators we estimate the system age to be 1-2 Gyr. We derive a radius (0.89 +/- 0.02 RJup) for the companion t hat is consistent with that predicted (0.914 RJup) by a model of a 1-Gyr-old, non-irradiated brown dwarf with a dusty atmosphere. The location of WASP-30b in the minimum of the mass-radius relation is consistent with the quantitative prediction of Chabrier & Baraffe (2000), thus confirming the theory.
We present the discovery of a planetary-mass companion to CFHTWIR-Oph 98, a low-mass brown dwarf member of the young Ophiuchus star-forming region, with a wide 200-au separation (1.46 arcsec). The companion was identified using Hubble Space Telescope images, and confirmed to share common proper motion with the primary using archival and new ground-based observations. Based on the very low probability of the components being unrelated Ophiuchus members, we conclude that Oph 98 AB forms a binary system. From our multi-band photometry, we constrain the primary to be an M9-L1 dwarf, and the faint companion to have an L2-L6 spectral type. For a median age of 3 Myr for Ophiuchus, fits of evolutionary models to measured luminosities yield masses of $15.4pm0.8$ M$_mathrm{Jup}$ for Oph 98 A and $7.8pm0.8$ M$_mathrm{Jup}$ for Oph 98 B, with respective effective temperatures of $2320pm40$ K and $1800pm40$ K. For possible system ages of 1-7 Myr, masses could range from 9.6-18.4 M$_mathrm{Jup}$ for the primary, and from 4.1-11.6 M$_mathrm{Jup}$ for the secondary. The low component masses and very large separation make this binary the lowest binding energy system imaged to date, indicating that the outcome of low-mass star formation can result in such extreme, weakly-bound systems. With such a young age, Oph 98 AB extends the growing population of young free-floating planetary-mass objects, offering a new benchmark to refine formation theories at the lowest masses.
98 - Philip W. Lucas 2010
We report the discovery of a very cool, isolated brown dwarf, UGPS 0722-05, with the UKIDSS Galactic Plane Survey. The near-infrared spectrum displays deeper H2O and CH4 troughs than the coolest known T dwarfs and an unidentified absorption feature a t 1.275 um. We provisionally classify the object as a T10 dwarf but note that it may in future come to be regarded as the first example of a new spectral type. The distance is measured by trigonometric parallax as d=4.1{-0.5}{+0.6} pc, making it the closest known isolated brown dwarf. With the aid of Spitzer/IRAC we measure H-[4.5] = 4.71. It is the coolest brown dwarf presently known -- the only known T dwarf that is redder in H-[4.5] is the peculiar T7.5 dwarf SDSS J1416+13B, which is thought to be warmer and more luminous than UGPS 0722-05. Our measurement of the luminosity, aided by Gemini/T-ReCS N band photometry, is L = 9.2 +/- 3.1x10^{-7} Lsun. Using a comparison with well studied T8.5 and T9 dwarfs we deduce Teff=520 +/- 40 K. This is supported by predictions of the Saumon & Marley models. With apparent magnitude J=16.52, UGPS 0722-05 is the brightest T dwarf discovered by UKIDSS so far. It offers opportunities for future study via high resolution near-infrared spectroscopy and spectroscopy in the thermal infrared.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا