ترغب بنشر مسار تعليمي؟ اضغط هنا

Hierarchy of magnon entanglement in antiferromagnets

96   0   0.0 ( 0 )
 نشر من قبل Erik Sjoqvist
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Continuous variable entanglement between magnon modes in Heisenberg antiferromagnet with Dzyaloshinskii-Moryia (DM) interaction is examined. Different bosonic modes are identified, which allows to establish a hierarchy of magnon entanglement in the ground state. We argue that entanglement between magnon modes is determined by a simple lattice specific factor, together with the ratio of the strengths of the DM and Heisenberg exchange interactions, and that magnon entanglement can be detected by means of quantum homodyne techniques. As an illustration of the relevance of our findings for possible entanglement experiments in the solid state, a typical antiferromagnet with the perovskite crystal structure is considered, and it is shown that long wave length magnon modes have the highest degree of entanglement.



قيم البحث

اقرأ أيضاً

Magnon cat state represents a macroscopic quantum superposition of collective magnetic excitations of large number spins that not only provides fundamental tests of macroscopic quantum effects but also finds applications in quantum metrology and quan tum computation. In particular, remote generation and manipulation of Schr{o}dinger cat states are particularly interesting for the development of long-distance and large-scale quantum information processing. Here, we propose an approach to remotely prepare magnon even/odd cat states by performing local non-Gaussian operations on the optical mode that is entangled with magnon mode through pulsed optomagnonic interaction. By evaluating key properties of the resulting cat states, we show that for experimentally feasible parameters they are generated with both high fidelity and nonclassicality, and with a size large enough to be useful for quantum technologies. Furthermore, the effects of experimental imperfections such as the error of projective measurements and dark count when performing single-photon operations have been discussed, where the lifetime of the created magnon cat states is expected to be $tsim1,mu$s.
We show how to generate tripartite entanglement in a cavity magnomechanical system which consists of magnons, cavity microwave photons, and phonons. The magnons are embodied by a collective motion of a large number of spins in a macroscopic ferrimagn et, and are driven directly by an electromagnetic field. The cavity photons and magnons are coupled via magnetic dipole interaction, and the magnons and phonons are coupled via magnetostrictive (radiation pressure-like) interaction. We show optimal parameter regimes for achieving the tripartite entanglement where magnons, cavity photons, and phonons are entangled with each other, and we further prove that the steady state of the system is a genuinely tripartite entangled state. The entanglement is robust against temperature. Our results indicate that cavity magnomechanical systems could provide a promising platform for the study of macroscopic quantum phenomena.
Quantum magnonics is an emerging research field, with great potential for applications in magnon based hybrid systems and quantum information processing. Quantum correlation, such as entanglement, is a central resource in many quantum information pro tocols that naturally comes about in any study toward quantum technologies. This applies also to quantum magnonics. Here, we investigate antiferromagnets in which sublattices with ferromagnetic interactions can have two different magnon modes, and we show how this may lead to experimentally detectable bipartite continuous variable magnon-magnon entanglement. The entanglement can be fully characterized via a single squeezing parameter, or, equivalently, entanglement parameter. The clear relation between the entanglement parameter and the Einstein, Podolsky, and Rosen (EPR) function of the ground state opens up for experimental observation of magnon-magnon continuous variable entanglement and EPR non-locality. We propose a practical experimental realization to detect the EPR function of the ground state, in a setting that relies on magnon-photon interaction in a microwave cavity.
129 - Wei He , Z. K. Xie , Rui Sun 2021
The magnon-magnon coupling in synthetic antiferromagnets advances it as hybrid magnonic systems to explore the quantum information technologies. To induce the magnon-magnon coupling, the parity symmetry between two magnetization needs to be broken. H ere we experimentally demonstrate a convenient method to break the parity symmetry by the asymmetric thickness of two magnetic layers and thus introduce a magnon-magnon coupling in Ir-based synthetic antiferromagnets CoFeB(10 nm)/Ir(tIr=0.6 nm, 1.2 nm)/CoFeB(13 nm). Remarkably, we find that the weakly uniaxial anisotropy field (~ 20 Oe) makes the magnon-magnon coupling anisotropic. The coupling strength presented by a characteristic anticrossing gap varies in the range between 0.54 GHz and 0.90 GHz for tIr =0.6 nm, and between nearly zero to 1.4 GHz for tIr = 1.2 nm, respectively. Our results demonstrate a feasible way to induce the magnon-magnon coupling by an asymmetric structure and tune the coupling strength by varying the direction of in-plane magnetic field. The magnon-magnon coupling in this highly tunable material system could open exciting perspectives for exploring quantum-mechanical coupling phenomena.
Synthetic antiferromagnet, comprised of two ferromagnetic layers separated by a non-magnetic layer, possesses two uniform precession resonance modes: in-phase acoustic mode and out-of-phase optic mode. In this work, we theoretically and numerically d emonstrated the strong coupling between acoustic and optic magnon modes. The strong coupling is attributed to the symmetry breaking of the system, which can be realized by tilting the bias field or constructing an asymmetrical synthetic antiferromagnet. It is found that the coupling strength can be highly adjusted by tuning the tilting angle of bias field, the magnitude of antiferromagnetic interlayer exchange coupling, and the thicknesses of ferromagnetic layers. Furthermore, the coupling between acoustic and optic magnon modes can even reach the ultrastrong coupling regime. Our findings show high promise for investigating quantum phenomenon with a magnonic platform.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا