ترغب بنشر مسار تعليمي؟ اضغط هنا

Gandhipedia: A one-stop AI-enabled portal for browsing Gandhian literature, life-events and his social network

108   0   0.0 ( 0 )
 نشر من قبل Sayantan Adak
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce an AI-enabled portal that presents an excellent visualization of Mahatma Gandhis life events by constructing temporal and spatial social networks from the Gandhian literature. Applying an ensemble of methods drawn from NLTK, Polyglot and Spacy we extract the key persons and places that find mentions in Gandhis written works. We visualize these entities and connections between them based on co-mentions within the same time frame as networks in an interactive web portal. The nodes in the network, when clicked, fire search queries about the entity and all the information about the entity presented in the corresponding book from which the network is constructed, are retrieved and presented back on the portal. Overall, this system can be used as a digital and user-friendly resource to study Gandhian literature.

قيم البحث

اقرأ أيضاً

Social relations are often used to improve recommendation quality when user-item interaction data is sparse in recommender systems. Most existing social recommendation models exploit pairwise relations to mine potential user preferences. However, rea l-life interactions among users are very complicated and user relations can be high-order. Hypergraph provides a natural way to model complex high-order relations, while its potentials for improving social recommendation are under-explored. In this paper, we fill this gap and propose a multi-channel hypergraph convolutional network to enhance social recommendation by leveraging high-order user relations. Technically, each channel in the network encodes a hypergraph that depicts a common high-order user relation pattern via hypergraph convolution. By aggregating the embeddings learned through multiple channels, we obtain comprehensive user representations to generate recommendation results. However, the aggregation operation might also obscure the inherent characteristics of different types of high-order connectivity information. To compensate for the aggregating loss, we innovatively integrate self-supervised learning into the training of the hypergraph convolutional network to regain the connectivity information with hierarchical mutual information maximization. The experimental results on multiple real-world datasets show that the proposed model outperforms the SOTA methods, and the ablation study verifies the effectiveness of the multi-channel setting and the self-supervised task. The implementation of our model is available via https://github.com/Coder-Yu/RecQ.
87 - Le Wu , Peijie Sun , Yanjie Fu 2019
Precise user and item embedding learning is the key to building a successful recommender system. Traditionally, Collaborative Filtering(CF) provides a way to learn user and item embeddings from the user-item interaction history. However, the performa nce is limited due to the sparseness of user behavior data. With the emergence of online social networks, social recommender systems have been proposed to utilize each users local neighbors preferences to alleviate the data sparsity for better user embedding modeling. We argue that, for each user of a social platform, her potential embedding is influenced by her trusted users. As social influence recursively propagates and diffuses in the social network, each users interests change in the recursive process. Nevertheless, the current social recommendation models simply developed static models by leveraging the local neighbors of each user without simulating the recursive diffusion in the global social network, leading to suboptimal recommendation performance. In this paper, we propose a deep influence propagation model to stimulate how users are influenced by the recursive social diffusion process for social recommendation. For each user, the diffusion process starts with an initial embedding that fuses the related features and a free user latent vector that captures the latent behavior preference. The key idea of our proposed model is that we design a layer-wise influence propagation structure to model how users latent embeddings evolve as the social diffusion process continues. We further show that our proposed model is general and could be applied when the user~(item) attributes or the social network structure is not available. Finally, extensive experimental results on two real-world datasets clearly show the effectiveness of our proposed model, with more than 13% performance improvements over the best baselines.
How can we better understand the mechanisms behind multi-turn information seeking dialogues? How can we use these insights to design a dialogue system that does not require explicit query formulation upfront as in question answering? To answer these questions, we collected observations of human participants performing a similar task to obtain inspiration for the system design. Then, we studied the structure of conversations that occurred in these settings and used the resulting insights to develop a grounded theory, design and evaluate a first system prototype. Evaluation results show that our approach is effective and can complement query-based information retrieval approaches. We contribute new insights about information-seeking behavior by analyzing and providing automated support for a type of information-seeking strategy that is effective when the clarity of the information need and familiarity with the collection content are low.
An effective content recommendation in modern social media platforms should benefit both creators to bring genuine benefits to them and consumers to help them get really interesting content. In this paper, we propose a model called Social Explorative Attention Network (SEAN) for content recommendation. SEAN uses a personalized content recommendation model to encourage personal interests driven recommendation. Moreover, SEAN allows the personalization factors to attend to users higher-order friends on the social network to improve the accuracy and diversity of recommendation results. Constructing two datasets from a popular decentralized content distribution platform, Steemit, we compare SEAN with state-of-the-art CF and content based recommendation approaches. Experimental results demonstrate the effectiveness of SEAN in terms of both Gini coefficients for recommendation equality and F1 scores for recommendation performance.
This chapter provides an accessible introduction for point processes, and especially Hawkes processes, for modeling discrete, inter-dependent events over continuous time. We start by reviewing the definitions and the key concepts in point processes. We then introduce the Hawkes process, its event intensity function, as well as schemes for event simulation and parameter estimation. We also describe a practical example drawn from social media data - we show how to model retweet cascades using a Hawkes self-exciting process. We presents a design of the memory kernel, and results on estimating parameters and predicting popularity. The code and sample event data are available as an online appendix
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا