ﻻ يوجد ملخص باللغة العربية
We have explored the prospect of probing a neutral scalar ($H$) produced in association with one $b$-quark and decaying either invisibly or into a pair of $b$-quarks at the LHC with centre of mass energy $sqrt s = 14$ TeV. In this regard, we adopt an effective theory approach to parameterize a $Hbbar bg$ vertex arising from a dimension six operator that encompasses the effect of some new physics setting in at a high scale. We concentrate solely on the five-flavor scheme to ascertain the sensitivity of the 14 TeV LHC in probing such an effective coupling as a function of the scalar mass at the highest possible projected luminosity, $3000~{rm fb}^{-1}$. Through our multivariate analysis using machine learning algorithm we show that staying within the perturbative limit of the Wilson coefficient of the effective interaction, evidence with statistical significance of $3sigma$ can be obtained in two different signal regions for $m_Hlesssim 2$ TeV and the scale of new physics $Lambda = 3$ TeV.
Elements of the phenomenology of color-octet scalars (sgluons), as predicted in the hybrid N=1/N=2 supersymmetric model, are discussed in the light of forthcoming experiments at the CERN Large Hadron Collider.
Once the existence of the Higgs boson is established at the CERN Large Hadron Collider (LHC), the focus will be shifted toward understanding its couplings to other particles. A crucial aspect is the measurement of the bottom Yukawa coupling, which is
We perform a comprehensive analysis of the Minimal Supersymmetric Standard Model (MSSM) in the scenario where the scalar partners of the fermions and the Higgs particles (except for the Standard-Model-like one) are assumed to be very heavy and are re
The low energy effective potential for the model with a light scalar and a heavy scalar is derived. We perform the path integration for both heavy and light scalars and derive the low energy effective potential in terms of only the light scalar. The
We investigate the predictions of a simple extension of the Standard Model where the Higgs sector is composed of one $SU(2)_L$ doublet and one real triplet. We discuss the general features of the model, including its vacuum structure, theoretical and