ترغب بنشر مسار تعليمي؟ اضغط هنا

Doming and spin cascade in Ferric Haems: Femtosecond X-ray Absorption and X-ray Emission Studies

690   0   0.0 ( 0 )
 نشر من قبل Majed Chergui
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The structure-function relationship is at the heart of biology and major protein deformations are correlated to specific functions. In the case of heme proteins, doming is associated with the respiratory function in hemoglobin and myoglobin, while ruffling has been correlated with electron transfer processes, such as in the case of Cytochrome c (Cyt c). The latter has indeed evolved to become an important electron transfer protein in humans. In its ferrous form, it undergoes ligand release and doming upon photoexcitation, but its ferric form does not release the distal ligand, while the return to the ground state has been attributed to thermal relaxation. Here, by combining femtosecond Fe K-edge X-ray absorption near-edge structure (XANES) studies and femtosecond Fe Kalpha and Kbeta X-ray emission spectroscopy (XES), we demonstrate that the photocycle of ferric Cyt c is entirely due to a cascade among excited spin states of the Iron ion, causing the ferric heme to undergo doming, which we identify for the first time. We also argue that this pattern is common to all ferric haems, raising the question of the biological relevance of doming in such proteins.

قيم البحث

اقرأ أيضاً

In haemoglobin (consisting of four globular myoglobin-like subunits), the change from the low-spin (LS) hexacoordinated haem to the high spin (HS) pentacoordinated domed form upon ligand detachment and the reverse process upon ligand binding, represe nt the transition states that ultimately drive the respiratory function. Visible-ultraviolet light has long been used to mimic the ligand release from the haem by photodissociation, while its recombination was monitored using time-resolved infrared to ultraviolet spectroscopic tools. However, these are neither element- nor spin-sensitive. Here we investigate the transition state in the case of Myoglobin-NO (MbNO) using femtosecond Fe Kalpha and Kbeta non-resonant X-ray emission spectroscopy (XES) at an X-ray free-electron laser upon photolysis of the Fe-NO bond. We find that the photoinduced change from the LS (S = 1/2) MbNO to the HS (S = 2) deoxy-myoglobin (deoxyMb) haem occurs in ca. 800 fs, and that it proceeds via an intermediate (S = 1) spin state. The XES observables also show that upon NO recombination to deoxyMb, the return to the planar MbNO ground state is an electronic relaxation from HS to LS taking place in ca. 30 ps. Thus, the entire ligand dissociation-recombination cycle in MbNO is a spin cross-over followed by a reverse spin cross-over process.
Exploring and understanding ultrafast processes at the atomic level is a scientific challenge. Femtosecond X-ray Absorption Spectroscopy (XAS) is an essential experimental probing technic, as it can simultaneously reveal both electronic and atomic st ructures, and thus unravel their non-equilibrium dynamic interplay which is at the origin of most of the ultrafast mechanisms. However, despite considerable efforts, there is still no femtosecond X-ray source suitable for routine experiments. Here we show that betatron radiation from relativistic laser-plasma interaction combines ideal features for femtosecond XAS. It has been used to investigate the non-equilibrium transition of a copper sample brought at extreme conditions of temperature and pressure by a femtosecond laser pulse. We measured a rise time of the electron temperature below 100 fs. This first experiment demonstrates the great potential of the betatron source and paves the way to a new class of ultrafast experiments.
Disentangling the dynamics of electrons and nuclei during nonadiabatic molecular transformations remains a considerable experimental challenge. Here we have investigated photoinduced electron transfer dynamics following a metal-to-ligand charge-trans fer (MLCT) excitation of the [Fe(bmip)2]2+ photosensitizer, where bmip = 2,6-bis(3-methyl-imidazole-1- ylidine)-pyridine, with simultaneous femtosecond-resolution Fe K{alpha} and Kb{eta} X-ray Emission Spectroscopy (XES) and Wide Angle X-ray Scattering (WAXS). This measurement clearly shows temporal oscillations in the XES and WAXS difference signals with the same 278 fs period oscillation. The oscillatory signal originates from an Fe-ligand stretching mode vibrational wavepacket on a triplet metal-centered (3MC) excited state surface. The vibrational wavepacket is created by 40% of the excited population that undergoes electron transfer from the non-equilibrium MLCT excited state to the 3MC excited state with a 110 fs time constant, while the other 60% relaxes to a 3MLCT excited state in parallel. The sensitivity of the K{alpha} XES spectrum to molecular structure results from core-level vibronic coupling, due to a 0.7% average Fe-ligand bond length difference in the lowest energy geometry of the 1s and 2p core-ionized states. These results highlight the importance of vibronic effects in time-resolved XES experiments and demonstrate the role of metal-centered excited states in the electronic excited state relaxation dynamics of an Fe carbene photosensitizer.
Iron-sulfur complexes play an important role in biological processes such as metabolic electron transport. A detailed understanding of the mechanism of long range electron transfer requires knowledge of the electronic structure of the complexes, whic h has traditionally been challenging to obtain, either by theory or by experiment, but the situation has begun to change with advances in quantum chemical methods and intense free electron laser light sources. We compute the signals from stimulated X-ray Raman spectroscopy (SXRS) and absorption spectroscopy of homovalent and mixed-valence [2Fe-2S] complexes, using the {it ab initio} density matrix renormalization group (DMRG) algorithm. The simulated spectra show clear signatures of the theoretically predicted dense low-lying excited states within the d-d manifold. Furthermore, the difference in signal intensity between the absorption-active and Raman-active states provides a potential mechanism to selectively excite states by a proper tuning of the excitation pump, to access the electronic dynamics within this manifold.
The capability of generating two intense, femtosecond x-ray pulses with controlled time delay opens the possibility of performing time-resolved experiments for x-ray induced phenomena. We have applied this capability to study the photoinduced dynamic s in diatomic molecules. In molecules composed of low-Z elements, textit{K}-shell ionization creates a core-hole state in which the main decay mode is an Auger process involving two electrons in the valence shell. After Auger decay, the nuclear wavepackets of the transient two-valence-hole states continue evolving on the femtosecond timescale, leading either to separated atomic ions or long-lived quasi-bound states. By using an x-ray pump and an x-ray probe pulse tuned above the textit{K}-shell ionization threshold of the nitrogen molecule, we are able to observe ion dissociation in progress by measuring the time-dependent kinetic energy releases of different breakup channels. We simulated the measurements on N$_2$ with a molecular dynamics model that accounts for textit{K}-shell ionization, Auger decay, and the time evolution of the nuclear wavepackets. In addition to explaining the time-dependent feature in the measured kinetic energy release distributions from the dissociative states, the simulation also reveals the contributions of quasi-bound states.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا