ﻻ يوجد ملخص باللغة العربية
The ongoing global pandemic of infection disease COVID-19 caused by the 2019 novel coronavirus (SARS-COV-2, formerly 2019-nCoV) presents critical threats to public health and the economy since it was identified in China, December 2019. The genome of SARS-CoV-2 had been sequenced and structurally annotated, yet little is known of the intrinsic organization and evolution of the genome. To this end, we present a mathematical method for the genomic spectrum, a kind of barcode, of SARS-CoV-2 and common human coronaviruses. The genomic spectrum is constructed according to the periodic distributions of nucleotides, and therefore reflects the unique characteristics of the genome. The results demonstrate that coronavirus SARS-CoV-2 exhibits dinucleotide TT islands in the non-structural proteins 3, 4, 5, and 6. Further analysis of the dinucleotide regions suggests that the dinucleotide repeats are increased during evolution and may confer the evolutionary fitness of the virus. The special dinucleotide regions in the SARS-CoV-2 genome identified in this study may become diagnostic and pharmaceutical targets in monitoring and curing the COVID-19 disease.
The coronavirus disease (COVID-19) pandemic, caused by the coronavirus SARS-CoV-2, has caused 60 millions of infections and 1.38 millions of fatalities. Genomic analysis of SARS-CoV-2 can provide insights on drug design and vaccine development for co
The emerging global infectious COVID-19 coronavirus disease by novel Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) presents critical threats to global public health and the economy since it was identified in late December 2019 in China
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been mutating since it was first sequenced in early January 2020. The genetic variants have developed into a few distinct clusters with different properties. Since the United States
The transmission and evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are of paramount importance to the controlling and combating of coronavirus disease 2019 (COVID-19) pandemic. Currently, near 15,000 SARS-CoV-2 single muta
The genomic ssRNA of coronaviruses is packaged within a helical nucleocapsid. Due to transitional symmetry of a helix, weakly specific cooperative interaction between ssRNA and nucleocapsid proteins leads to the natural selection of specific quasi-pe