ﻻ يوجد ملخص باللغة العربية
Surveys of protoplanetary disks in star-forming regions of similar age revealed significant variations in average disk mass between some regions. For instance, disks in the Orion Nebular Cluster (ONC) and Corona Australis (CrA) are on average smaller than disks observed in Lupus, Taurus, Chamaeleon I or Ophiuchus. In contrast to previous models that study truncation of disks at a late stage of their evolution, we investigate whether disks may already be born with systematically smaller disk sizes in more massive star-forming regions as a consequence of enhanced ionization rates. Assuming various cosmic-ray ionization rates, we compute the resistivities for ambipolar diffusion and Ohmic dissipation with a chemical network, and perform 2D non-ideal magnetohydrodynamical protostellar collapse simulations. A higher ionization rate leads to stronger magnetic braking, and hence to the formation of smaller disks. Accounting for recent findings that protostars act as forges of cosmic rays and considering only mild attenuation during the collapse phase, we show that a high average cosmic-ray ionization rate in star-forming regions like the ONC or CrA can explain the detection of smaller disks in these regions. Our results show that on average a higher ionization rate leads to the formation of smaller disks. Therefore, smaller disks in regions of similar age can be the consequence of different levels of ionization, and may not exclusively be caused by disk truncation via external photoevaporation. We strongly encourage observations that allow measuring the cosmic-ray ionization degrees in different star-forming regions to test our hypothesis.
Spatial correlations among proto-planetary disk orientations carry unique information on physics of multiple star formation processes. We select five nearby star-forming regions that comprise a number of proto-planetary disks with spatially-resolved
We present the initial results from a survey for planetary-mass brown dwarfs in the Taurus star-forming region. We have identified brown dwarf candidates in Taurus using proper motions and photometry from several ground- and space-based facilities. T
We observed HCO$^+$ $J=1-0$ and H$^{13}$CO$^+$ $J=1-0$ emission towards the five protoplanetary disks around IM Lup, GM Aur, AS 209, HD 163296, and MWC 480 as part of the MAPS project. HCO$^+$ is detected and mapped at 0.3arcsec,resolution in all fiv
The evolution of protoplanetary disks is dominated by the conservation of angular momentum, where the accretion of material onto the central star is driven by viscous expansion of the outer disk or by disk winds extracting angular momentum without ch
Nitrogen chemistry in protoplanetary disks and the freeze-out on dust particles is key to understand the formation of nitrogen bearing species in early solar system analogs. So far, ammonia has not been detected beyond the snowline in protoplanetary