ترغب بنشر مسار تعليمي؟ اضغط هنا

Proof of a q-supercongruence conjectured by Guo and Schlosser

86   0   0.0 ( 0 )
 نشر من قبل Su-Dan Wang
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we confirm the following conjecture of Guo and Schlosser: for any odd integer $n>1$ and $M=(n+1)/2$ or $n-1$, $$ sum_{k=0}^{M}[4k-1]_{q^2}[4k-1]^2frac{(q^{-2};q^4)_k^4}{(q^4;q^4)_k^4}q^{4k}equiv (2q+2q^{-1}-1)[n]_{q^2}^4pmod{[n]_{q^2}^4Phi_n(q^2)}, $$ where $[n]=[n]_q=(1-q^n)/(1-q),(a;q)_0=1,(a;q)_k=(1-a)(1-aq)cdots(1-aq^{k-1})$ for $kgeq 1$ and $Phi_n(q)$ denotes the $n$-th cyclotomic polynomial.



قيم البحث

اقرأ أيضاً

136 - Victor J. W. Guo 2020
Using the $q$-Wilf--Zeilberger method and a $q$-analogue of a divergent Ramanujan-type supercongruence, we give several $q$-supercongruences modulo the fourth power of a cyclotomic polynomial. One of them is a $q$-analogue of a supercongruence recent ly proved by Wang: for any prime $p>3$, $$ sum_{k=0}^{p-1} (3k-1)frac{(frac{1}{2})_k (-frac{1}{2})_k^2 }{k!^3}4^kequiv p-2p^3 pmod{p^4}, $$ where $(a)_k=a(a+1)cdots (a+k-1)$ is the Pochhammer symbol.
By means of the $q$-Zeilberger algorithm, we prove a basic hypergeometric supercongruence modulo the fifth power of the cyclotomic polynomial $Phi_n(q)$. This result appears to be quite unique, as in the existing literature so far no basic hypergeome tric supercongruences modulo a power greater than the fourth of a cyclotomic polynomial have been proved. We also establish a couple of related results, including a parametric supercongruence.
We prove two supercongruences for specific truncated hypergeometric series. These include an uniparametric extension of a supercongruence that was recently established by Long and Ramakrishna. Our proofs involve special instances of various hypergeom etric identities including Whipples transformation and the Karlsson--Minton summation.
173 - Yidong Sun 2013
In this note, using the derangement polynomials and their umbral representation, we give another simple proof of an identity conjectured by Lacasse in the study of the PAC-Bayesian machine learning theory.
126 - Jin Wang , Xinrong Ma 2017
In light of the well-known fact that the $n$th divided difference of any polynomial of degree $m$ must be zero while $m<n$,the present paper proves the $(alpha,beta)$-inversion formula conjectured by Hsu and Ma [J. Math. Res. $&$ Exposition 25(4) (20 05) 624]. As applications of $(alpha,beta)$-inversion, we not only recover some known matrix
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا