ﻻ يوجد ملخص باللغة العربية
The popularity of concurrent transmissions (CT) has soared after recent studies have shown their feasibility on the four physical layers specified by BLE 5, hence providing an alternative to the use of IEEE 802.15.4 for the design of reliable and efficient low-power wireless protocols. However, to date, the extent to which physical layer properties affect the performance of CT has not yet been investigated in detail. This paper fills this gap and provides the first extensive study on the impact of the physical layer on CT-based solutions using IEEE 802.15.4 and BLE 5. We first highlight through simulation how the impact of errors induced by de-synchronization and beating on the performance of CT highly depends on the choice of the underlying physical layer. We then confirm these observations experimentally on real hardware through an analysis of the bit error distribution across received packets, unveiling possible techniques to effectively handle these errors. We further study the performance of CT-based flooding protocols in the presence of radio interference on a large-scale, and derive important insights on how the used physical layer affects their dependability.
Targeting dependable communications for industrial Internet of Things applications, IETF 6TiSCH provides mechanisms for efficient scheduling, routing, and forwarding of IPv6 traffic across low-power mesh networks. Yet, despite an overwhelming body of
In this research paper, state space representation of concurrent, linearly coupled dynamical systems is discussed. It is reasoned that the Tensor State Space Representation (TSSR) proposed in [Rama1] is directly applicable in such a problem. Also som
In this paper, we introduce a sophisticated path loss model incorporating both line-of-sight (LoS) and non-line-of-sight (NLoS) transmissions to study their impact on the performance of dense small cell networks (SCNs). Analytical results are obtaine
The influence of node mobility on the convergence time of averaging gossip algorithms in networks is studied. It is shown that a small number of fully mobile nodes can yield a significant decrease in convergence time. A method is developed for derivi
In this paper, we study a X-duplex relay system with one source, one amplify-and-forward (AF) relay and one destination, where the relay is equipped with a shared antenna and two radio frequency (RF) chains used for transmission or reception. X-duple