ترغب بنشر مسار تعليمي؟ اضغط هنا

Atmospheric Escape From TOI-700 d: Venus versus Earth Analogs

464   0   0.0 ( 0 )
 نشر من قبل Chuanfei Dong
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The recent discovery of an Earth-sized planet (TOI-700 d) in the habitable zone of an early-type M-dwarf by the Transiting Exoplanet Survey Satellite constitutes an important advance. In this Letter, we assess the feasibility of this planet to retain an atmosphere -- one of the chief ingredients for surface habitability -- over long timescales by employing state-of-the-art magnetohydrodynamic models to simulate the stellar wind and the associated rates of atmospheric escape. We take two major factors into consideration, namely, the planetary atmospheric composition and magnetic field. In all cases, we determine that the atmospheric ion escape rates are potentially a few orders of magnitude higher than the inner Solar system planets, but TOI-700 d is nevertheless capable of retaining a $1$ bar atmosphere over gigayear timescales for certain regions of the parameter space. The simulations show that the unmagnetized TOI-700 d with a 1 bar Earth-like atmosphere could be stripped away rather quickly ($<$ 1 gigayear), while the unmagnetized TOI-700 d with a 1 bar CO$_2$-dominated atmosphere could persist for many billions of years; we find that the magnetized Earth-like case falls in between these two scenarios. We also discuss the prospects for detecting radio emission of the planet (thereby constraining its magnetic field) and discerning the presence of an atmosphere.



قيم البحث

اقرأ أيضاً

We present $Spitzer$ 4.5$mu$m observations of the transit of TOI-700 d, a habitable zone Earth-sized planet in a multiplanet system transiting a nearby M-dwarf star (TIC 150428135, 2MASS J06282325-6534456). TOI-700 d has a radius of $1.144^{+0.062}_{ -0.061}R_oplus$ and orbits within its host stars conservative habitable zone with a period of 37.42 days ($T_mathrm{eq} sim 269$K). TOI-700 also hosts two small inner planets (R$_b$=$1.037^{+0.065}_{-0.064}R_oplus$ & R$_c$=$2.65^{+0.16}_{-0.15}R_oplus$) with periods of 9.98 and 16.05 days, respectively. Our $Spitzer$ observations confirm the TESS detection of TOI-700 d and remove any remaining doubt that it is a genuine planet. We analyze the $Spitzer$ light curve combined with the 11 sectors of TESS observations and a transit of TOI-700 c from the LCOGT network to determine the full system parameters. Although studying the atmosphere of TOI-700 d is not likely feasible with upcoming facilities, it may be possible to measure the mass of TOI-700 d using state-of-the-art radial velocity instruments (expected RV semi-amplitude of $sim$70 cm/s).
We present a three-species (H$^+$, O$^+$ and e$^-$) multi-fluid magnetohydrodynamic (MHD) model, endowed with the requisite upper atmospheric chemistry, that is capable of accurately quantifying the magnitude of oxygen ion losses from Earth-like exop lanets in habitable zones, whose magnetic and rotational axes are roughly coincidental with one another. We apply this model to investigate the role of planetary obliquity in regulating atmospheric losses from a magnetic perspective. For Earth-like exoplanets orbiting solar-type stars, we demonstrate that the dependence of the total atmospheric ion loss rate on the planetary (magnetic) obliquity is relatively weak; the escape rates are found to vary between $2.19 times 10^{26}$ s$^{-1}$ to $2.37 times 10^{26}$ s$^{-1}$. In contrast, the obliquity can influence the atmospheric escape rate ($sim$ $10^{28}$ s$^{-1}$) by more than a factor of $2$ (or $200%$) in the case of Earth-like exoplanets orbiting late-type M-dwarfs. Thus, our simulations indicate that planetary obliquity may play a weak-to-moderate role insofar as the retention of an atmosphere (necessary for surface habitability) is concerned.
We present the discovery and validation of a three-planet system orbiting the nearby (31.1 pc) M2 dwarf star TOI-700 (TIC 150428135). TOI-700 lies in the TESS continuous viewing zone in the Southern Ecliptic Hemisphere; observations spanning 11 secto rs reveal three planets with radii ranging from 1 R$_oplus$ to 2.6 R$_oplus$ and orbital periods ranging from 9.98 to 37.43 days. Ground-based follow-up combined with diagnostic vetting and validation tests enable us to rule out common astrophysical false-positive scenarios and validate the system of planets. The outermost planet, TOI-700 d, has a radius of $1.19pm0.11$ R$_oplus$ and resides in the conservative habitable zone of its host star, where it receives a flux from its star that is approximately 86% of the Earths insolation. In contrast to some other low-mass stars that host Earth-sized planets in their habitable zones, TOI-700 exhibits low levels of stellar activity, presenting a valuable opportunity to study potentially-rocky planets over a wide range of conditions affecting atmospheric escape. While atmospheric characterization of TOI-700 d with the James Webb Space Telescope (JWST) will be challenging, the larger sub-Neptune, TOI-700 c (R = 2.63 R$_oplus$), will be an excellent target for JWST and beyond. TESS is scheduled to return to the Southern Hemisphere and observe TOI-700 for an additional 11 sectors in its extended mission, which should provide further constraints on the known planet parameters and searches for additional planets and transit timing variations in the system.
133 - S. Carolan 2020
Here, we study the dichotomy of the escaping atmosphere of the newly discovered close-in exoplanet AU Mic b. On one hand, the high EUV stellar flux is expected to cause a strong atmospheric escape in AU Mic b. On the other hand, the wind of this youn g star is believed to be very strong, which could reduce or even inhibit the planets atmospheric escape. AU Mic is thought to have a wind mass-loss rate that is up to $1000$ times larger than the solar wind mass-loss rate ($dot{M}_odot$). To investigate this dichotomy, we perform 3D hydrodynamics simulations of the stellar wind--planetary atmosphere interactions in the AU Mic system and predict the synthetic Ly-$alpha$ transits of AU Mic b. We systematically vary the stellar wind mass-loss rate from a `no wind scenario to up to a stellar wind with a mass-loss rate of $1000~dot{M}_odot$. We find that, as the stellar wind becomes stronger, the planetary evaporation rate decreases from $6.5times 10^{10}$ g/s to half this value. With a stronger stellar wind, the atmosphere is forced to occupy a smaller volume, affecting transit signatures. Our predicted Ly-$alpha$ absorption drops from $sim 20%$, in the case of `no wind to barely any Ly-$alpha$ absorption in the extreme stellar wind scenario. Future Ly-$alpha$ transits could therefore place constraints not only on the evaporation rate of AU Mic b, but also on the mass-loss rate of its host star.
Molecular kinetic simulations are typically used to accurately describe the tenuous regions of the upper atmospheres on planetary bodies. These simulations track the motion of particles representing real atmospheric atoms and/or molecules subject to collisions, the objects gravity, and external influences. Because particles can end up in very large ballistic orbits, upper boundary conditions (UBC) are typically used to limit the domain size thereby reducing the time for the atmosphere to reach steady-state. In the absence of a clear altitude at which all molecules are removed, such as a Hill sphere, an often used condition is to choose an altitude at which collisions become infrequent so that particles on escape trajectories are removed. The remainder are then either specularly reflected back into the simulation domain or their ballistic trajectories are calculated analytically or explicitly tracked so they eventually re-enter the domain. Here we examine the effect of the choice of the UBC on the escape rate and the structure of the atmosphere near the nominal exobase in the convenient and frequently used 1D spherically symmetric approximation. Using Callisto as the example body, we show that the commonly used specular reflection UBC can lead to significant uncertainties when simulating a species with a lifetime comparable to or longer than a dynamical time scale, such as an overestimation of escape rates and an inflated exosphere. Therefore, although specular reflection is convenient, the molecular lifetimes and bodys dynamical time scales need to be considered even when implementing the convenient 1D spherically symmetric simulations in order to accurately estimate the escape rate and the density and temperature structure in the transition regime.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا