ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetic Field Structure of Orion Source I

86   0   0.0 ( 0 )
 نشر من قبل Tomoya Hirota
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We observed polarization of the SiO rotational transitions from Orion Source I (SrcI) to probe the magnetic field in bipolar outflows from this high mass protostar. Both 43 GHz $J$=1-0 and 86 GHz $J$=2-1 lines were mapped with $sim$20 AU resolution, using the Very Large Array (VLA) and Atacama Large Millimeter/Submillimeter Array (ALMA), respectively. The $^{28}$SiO transitions in the ground vibrational state are a mixture of thermal and maser emission. Comparison of the polarization position angles in the $J$=1-0 and $J$=2-1 transitions allows us to set an upper limit on possible Faraday rotation of $10^{4}$ radians m$^{-2}$, which would twist the $J$=2-1 position angles typically by less than 10 degrees. The smooth, systematic polarization structure in the outflow lobes suggests a well ordered magnetic field on scales of a few hundred AU. The uniformity of the polarization suggests a field strength of $sim$30 milli-Gauss. It is strong enough to shape the bipolar outflow and possibly lead to sub-Keplerian rotation of gas at the base of the outflow. The strikingly high fractional linear polarizations of 80-90% in the $^{28}$SiO $v$=0 masers require anisotropic pumping. We measured circular polarizations of 60% toward the strongest maser feature in the $v$=0 $J$=1-0 peak. Anisotropic resonant scattering (ARS) is likely to be responsible for this circular polarization. We also present maps of the $^{29}$SiO $v$=0 $J$=2-1 maser and several other SiO transitions at higher vibrational levels and isotopologues.



قيم البحث

اقرأ أيضاً

One of the outstanding problems in star-formation theory concerns the transfer of angular momentum such that mass can accrete onto a newly born young stellar object (YSO). From a theoretical standpoint, outflows and jets are predicted to play an esse ntial role in angular momentum transfer and their rotation motions have been reported for both low- and high-mass YSOs. However, little quantitative discussion on outflow launching mechanisms have been presented for high-mass YSOs due to a lack of observational data. Here we present a clear signature of rotation in the bipolar outflow driven by Orion Source I, a high-mass YSO candidate, using the Atacama Large Millimeter/Submillimeter Array (ALMA). A rotational transition of silicon monoxide (Si18O) reveals a velocity gradient perpendicular to the outflow axis which is consistent with that of the circumstellar disk traced by a high-excitation water (H2O) line. The launching radii and outward velocity of the outflow are estimated to be >10 au and 10 km s-1, respectively. These parameters rule out a possibility that the observed outflow is produced by entrainment of a high-velocity jet, and that contribution from stellar-wind or X-wind which have smaller launching radii are significant in the case of Source I. Thus, present results provide a convincing evidence of a rotating outflow directly driven by the magneto-centrifugal disk wind launched by a high-mass YSO candidate.
We present observational results of the submillimeter H2O and SiO lines toward a candidate high-mass young stellar object Orion Source I using ALMA. The spatial structures of the high excitation lines at lower-state energies of >2500 K show compact s tructures consistent with the circumstellar disk and/or base of the northeast-southwest bipolar outflow with a 100 au scale. The highest excitation transition, the SiO (v=4) line at band 8, has the most compact structure. In contrast, lower-excitation transitions are more extended than 200 au tracing the outflow. Almost all the line show velocity gradients perpendicular to the outflow axis suggesting rotation motions of the circumstellar disk and outflow. While some of the detected lines show broad line profiles and spatially extended emission components indicative of thermal excitation, the strong H2O lines at 321 GHz, 474 GHz, and 658 GHz with brightness temperatures of >1000 K show clear signatures of maser action.
Using Science Verification data from the Atacama Large Millimeter/Submillimeter Array (ALMA), we have identified and imaged five rotational transitions (J=5-4 and J=6-5) of the three silicon monoxide isotopologues 28SiO v=0, 1, 2 and 29SiO v=0 and 28 Si18O v=0 in the frequency range from 214 to 246 GHz towards the Orion BN/KL region. The emission of the ground-state 28SiO, 29SiO and 28Si18O shows an extended bipolar shape in the northeast-southwest direction at the position of Radio Source I, indicating that these isotopologues trace an outflow (~18 km/s, P.A. ~50deg, ~5000 AU in diameter) that is driven by this embedded high-mass young stellar object (YSO). Whereas on small scales (10-1000 AU) the outflow from Source I has a well-ordered spatial and velocity structure, as probed by Very Long Baseline Interferometry (VLBI) imaging of SiO masers, the large scales (500-5000 AU) probed by thermal SiO with ALMA reveal a complex structure and velocity field, most likely related to the effects of the environment of the BN/KL region on the outflow emanating from Source I. The emission of the vibrationally-excited species peaks at the position of Source I. This emission is compact and not resolved at an angular resolution of ~1.5 (~600 AU at a distance of 420 pc). 2-D Gaussian fitting to individual velocity channels locates emission peaks within radii of 100 AU, i.e. they trace the innermost part of the outflow. A narrow spectral profile and spatial distribution of the v=1 J=5-4 line similar to the masing v=1 J=1-0 transition, provide evidence for the most highly rotationally excited (frequency > 200 GHz) SiO maser emission associated with Source I known to date. The maser emission will enable studies of the Source I disk-outflow interface with future ALMA longest baselines.
The infrared source known as Orion n was detected in 1980 with observations made with the 3.8-m United Kingdom Infrared Telescope. About two decades later, sensitive observations made with the Very Large Array revealed the presence of a mJy double ra dio source apparently coincident in position with the infrared source n. The radio source was assumed to be the counterpart of the infrared source. However, over the years it has been concluded that the radio source shows large proper motions to the south while the infrared source n is stationary. Here we reanalyze the proper motions of the radio source adding both older and newer VLA observations than previously used. We confirm the proper motions of the radio source that at present no longer coincides positionally with the infrared source. The solution to this problem is, most probably, that the infrared source n and the radio source are not the same object: the infrared source is a stationary object in the region while the radio counterpart is moving as a result of the explosion that took place in this region some 500 years ago and that expelled large amounts of molecular gas as well as several compact sources. Considering the paper where it was first reported, we refer to this double radio source as Orion MR. In addition, we use these new observations to fully confirm the large proper motions of the sources IRc23 and Zapata 11. Together with sources BN, I, Orion MR, and x, there are at least six compact sources that recede from a point in common in Orion BN/KL. However, IRc23 is peculiar in that its ejection age appears to be only $sim$300 years. The relatively large number of sources rules out as a possible mechanism the classic three-body scenario since then only two escaping bodies are expected: a tight binary plus the third star involved in the encounter.
Many evolved stars travel through space at supersonic velocities, which leads to the formation of bow shocks ahead of the star where the stellar wind collides with the interstellar medium (ISM). Herschel observations of the bow shock of $alpha$-Orion is show that the shock is almost free of instabilities, despite being, at least in theory, subject to both Kelvin-Helmholtz and Rayleigh-Taylor instabilities. A possible explanation for the lack of instabilities lies in the presence of an interstellar magnetic field. We wish to investigate whether the magnetic field of the interstellar medium (ISM) in the Orion arm can inhibit the growth of instabilities in the bow shock of $alpha$-Orionis. We used the code MPI-AMRVAC to make magneto-hydrodynamic simulations of a circumstellar bow shock, using the wind parameters derived for $alpha$-Orionis and interstellar magnetic field strengths of $B,=,1.4,, 3.0$, and $5.0, mu$G, which fall within the boundaries of the observed magnetic field strength in the Orion arm of the Milky Way. Our results show that even a relatively weak magnetic field in the interstellar medium can suppress the growth of Rayleigh-Taylor and Kelvin-Helmholtz instabilities, which occur along the contact discontinuity between the shocked wind and the shocked ISM. The presence of even a weak magnetic field in the ISM effectively inhibits the growth of instabilities in the bow shock. This may explain the absence of such instabilities in the Herschel observations of $alpha$-Orionis.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا