ﻻ يوجد ملخص باللغة العربية
We consider a multi-step algorithm for the computation of the historical expected shortfall such as defined by the Basel Minimum Capital Requirements for Market Risk. At each step of the algorithm, we use Monte Carlo simulations to reduce the number of historical scenarios that potentially belong to the set of worst scenarios. The number of simulations increases as the number of candidate scenarios is reduced and the distance between them diminishes. For the most naive scheme, we show that the L p-error of the estimator of the Expected Shortfall is bounded by a linear combination of the probabilities of inversion of favorable and unfavorable scenarios at each step, and of the last step Monte Carlo error associated to each scenario. By using concentration inequalities, we then show that, for sub-gamma pricing errors, the probabilities of inversion converge at an exponential rate in the number of simulated paths. We then propose an adaptative version in which the algorithm improves step by step its knowledge on the unknown parameters of interest: mean and variance of the Monte Carlo estimators of the different scenarios. Both schemes can be optimized by using dynamic programming algorithms that can be solved off-line. To our knowledge, these are the first non-asymptotic bounds for such estimators. Our hypotheses are weak enough to allow for the use of estimators for the different scenarios and steps based on the same random variables, which, in practice, reduces considerably the computational effort. First numerical tests are performed.
We introduce and study the main properties of a class of convex risk measures that refine Expected Shortfall by simultaneously controlling the expected losses associated with different portions of the tail distribution. The corresponding adjusted Exp
The 2008 mortgage crisis is an example of an extreme event. Extreme value theory tries to estimate such tail risks. Modern finance practitioners prefer Expected Shortfall based risk metrics (which capture tail risk) over traditional approaches like v
We consider option hedging in a model where the underlying follows an exponential Levy process. We derive approximations to the variance-optimal and to some suboptimal strategies as well as to their mean squared hedging errors. The results are obtain
This article presents differential equations and solution methods for the functions of the form $Q(x) = F^{-1}(G(x))$, where $F$ and $G$ are cumulative distribution functions. Such functions allow the direct recycling of Monte Carlo samples from one
In this paper, we propose a methodology based on piece-wise homogeneous Markov chain for credit ratings and a multivariate model of the credit spreads to evaluate the financial risk in European Union (EU). Two main aspects are considered: how the fin