ترغب بنشر مسار تعليمي؟ اضغط هنا

High-resolution VLA low radio frequency observations of the Perseus cluster: radio lobes, mini-halo and bent-jet radio galaxies

111   0   0.0 ( 0 )
 نشر من قبل Marie-Lou Gendron Marsolais
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the first high-resolution 230-470 MHz map of the Perseus cluster obtained with the Karl G. Jansky Very Large Array. The high dynamic range and resolution achieved has allowed the identification of previously-unknown structures in this nearby galaxy cluster. New hints of sub-structures appear in the inner radio lobes of the brightest cluster galaxy NGC 1275. The spurs of radio emission extending into the outer X-ray cavities, inflated by past nuclear outbursts, are seen for the first time at these frequencies, consistent with spectral aging. Beyond NGC 1275, we also analyze complex radio sources harbored in the cluster. Two new distinct, narrowly-collimated jets are visible in IC 310, consistent with a highly-projected narrow-angle tail radio galaxy infalling into the cluster. We show how this is in agreement with its blazar-like behavior, implying that blazars and bent-jet radio galaxies are not mutually exclusive. We report the presence of filamentary structures across the entire tail of NGC 1265, including two new pairs of long filaments in the faintest bent extension of the tail. Such filaments have been seen in other cluster radio sources such as relics and radio lobes, indicating that there may be a fundamental connection between all these radio structures. We resolve the very narrow and straight tail of CR 15 without indication of double jets, so that the interpretation of such head-tail sources is yet unclear. Finally, we note that only the brightest western parts of the mini-halo remain, near NGC 1272 and its bent double jets.



قيم البحث

اقرأ أيضاً

We present the results of Karl G. Jansky Very Large Array (VLA) observations to study the properties of FR0 radio galaxies, the compact radio sources associated with early-type galaxies which represent the bulk of the local radio-loud AGN population. We obtained A-array observations at 1.5, 4.5, and 7.5 GHz for 18 FR0s from the FR0CAT sample: these are sources at $z<0.05$, unresolved in the FIRST images and spectroscopically classified as low excitation galaxies (LEG). Although we reach an angular resolution of $sim$0.3 arcsec, the majority of the 18 FR0s is still unresolved. Only four objects show extended emission. Six have steep radio spectra, 11 are flat cores, while one shows an inverted spectrum. We find that 1) the ratio between core and total emission in FR0s is $sim$30 times higher than in FRI and 2) FR0s share the same properties with FRIs from the nuclear and host point of view. FR0s differ from FRIs only for the paucity of extended radio emission. Different scenarios were investigated: 1) the possibility that all FR0s are young sources eventually evolving into extended sources is ruled out by the distribution of radio sizes; 2) similarly, a time-dependent scenario, where a variation of accretion or jet launching prevents the formation of large-scales radio structures, appears to be rather implausible due to the large abundance of sub-kpc objects 3) a scenario in which FR0s are produced by mildly relativistic jets is consistent with the data but requires observations of a larger sample to be properly tested.
We present new deep, high-resolution, 1.5 GHz observations of the prototypical nearby Perseus galaxy cluster from the Karl G. Jansky Very Large Array. We isolate for the first time the complete tail of radio emission of the bent-jet radio galaxy NGC 1272, which had been previously mistaken to be part of the radio mini-halo. The possibility that diffuse radio galaxy emission contributes to mini-halo emission may be a general phenomenon in relaxed cool-core clusters, and should be explored. The collimated jets of NGC 1272 initially bend to the west, and then transition eastward into faint, 60 kpc-long extensions with eddy-like structures and filaments. We suggest interpretations for these structures that involve bulk motions of intracluster gas, the galaxys orbit in the cluster including projection effects, and the passage of the galaxy through a sloshing cold front. Instabilities and turbulence created at the surface of this cold front and in the turbulent wake of the infalling host galaxy most likely play a role in the formation of the observed structures. We also discover a series of faint rings, south-east of NGC 1272, which are a type of structure that has never been seen before in galaxy clusters.
We present radio observations of ultraluminous infrared galaxies (ULIRGs) using the Giant Metrewave Radio Telescope (GMRT) and combine them with archival multi-frequency observations to understand whether ULIRGs are the progenitors of the powerful ra dio loud galaxies in the local Universe. ULIRGs are characterized by large infrared luminosities ($L_{IR}>$10$^{12}$L$odot$), large dust masses ($sim10^{8}M_{odot}$) and vigorous star formation (star formation rates $sim$10-100 $M_{odot}~$yr$^{-1}$). Studies show that they represent the end stages of mergers of gas-rich spiral galaxies. Their luminosity can be due to both starburst activity and active galactic nuclei (AGN). We study a sample of 13 ULIRGs that have optically identified AGN characteristics with 1.28~GHz GMRT observations. Our aim is to resolve any core-jet structures or nuclear extensions and hence examine whether the ULIRGs are evolving into radio loud ellipticals. Our deep, low frequency observations show marginal extension for only one source. However, the integrated radio spectra of 9 ULIRGs show characteristics that are similar to that of GPS/CSS/CSO/young radio sources. The estimated spectral ages are 0.4 to 20 Myr and indicate that they are young radio sources and possible progenitors of radio galaxies. Hence, we conclude that although most ULIRGs do not show kpc scale extended radio emission associated with nuclear activity, their radio spectral energy distributions do show signatures of young radio galaxies.
158 - Natalia Zywucka 2014
In the framework of the unification scheme of radio-loud active galactic nuclei, BL Lac objects and quasars are the beamed end-on counterparts of low-power (FRI) and high-power (FRII) radio galaxies, respectively. Some BL Lacs have been found to poss ess the FRII-type large-scale radio morphology, suggesting that the parent population of BL Lacs is a mixture of low- and high-power radio galaxies. This seems to apply only to `low frequency-peaked BL Lacs, since all the `high frequency-peaked BL Lacs studied so far were shown to host exclusively the FRI-type radio jets. While analyzing the NVSS survey maps of the TeV detected BL Lacs, we have however discovered that the high frequency-peaked object SHBL J001355.9-185406 is associated uniquely with the one-sided, arcmin-scale, and edge-brightened jet/lobe-like feature extending to the south-west from the blazar core. In order to investigate in detail the large-scale morphology of SHBL J001355.9-185406, we have performed low-frequency and high-resolution observations of the source at 156, 259 and 629 MHz using the Giant Metrewave Radio Telescope. Our analysis indicates that no diffuse arcmin-scale emission is present around the unresolved blazar core, and that the arcmin-scale structure seen on the NVSS map breaks into three distinct features unrelated to the blazar, but instead associated with background AGN. The upper limits for the extended radio halo around the TeV-emitting BL Lac object SHBL J001355.9-185406 read as < 10% - 1% at $156-629$ MHz. The fact that the integrated radio spectrum of the unresolved blazar core is flat down to 156 MHz indicates that a self-similar character of the jet in the source holds up to relatively large distances from the jet base.
This paper studied the faint, diffuse extended X-ray emission associated with the radio lobes and the hot gas in the intracluster medium (ICM) environment for a sample of radio galaxies. We used shallow ($sim 10$ ks) archival Chandra observations for 60 radio galaxies (7 FR I and 53 FR II) with $0.0222 le z le 1.785$ selected from the 298 extragalactic radio sources identified in the 3CR catalog. We used Bayesian statistics to look for any asymmetry in the extended X-ray emission between regions that contain the radio lobes and regions that contain the hot gas in the ICM. In the Chandra broadband ($0.5 - 7.0$ keV), which has the highest detected X-ray flux and the highest signal-to-noise ratio, we found that the non-thermal X-ray emission from the radio lobes dominates the thermal X-ray emission from the environment for $sim 77%$ of the sources in our sample. We also found that the relative amount of on-jet axis non-thermal emission from the radio lobes tends to increase with redshift compared to the off-jet axis thermal emission from the environment. This suggests that the dominant X-ray mechanism for the non-thermal X-ray emission in the radio lobes is due to the inverse Compton upscattering of cosmic microwave background (CMB) seed photons by relativistic electrons in the radio lobes, a process for which the observed flux is roughly redshift independent due to the increasing CMB energy density with increasing redshift.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا