ﻻ يوجد ملخص باللغة العربية
We solved the instantaneous Bethe-Salpeter equation for heavy pseudoscalars in different kernels, where the kernels are obtained using linear scalar potential plus one gluon exchange vector potentials in Feynman gauge, Landau gauge, Coulomb gauge and time-component Coulomb gauge. We obtained the mass spectra of heavy pseudoscalars, and compared the results between different kernels, found that using the same parameters we obtain the smallest mass splitting in time-component Coulomb gauge, the similar largest mass splitting in Feynman and Coulomb gauges, middle size splitting in Landau gauge.
This work is an extension of the work in cite{bhatnagar18} to ground and excited states of $0^{++}, 0^{-+}$, and $1^{--}$ of heavy-light ($coverline{u}, coverline{s}, boverline{u}, boverline{s}$, and $boverline{c}$) quarkonia in the framework of a QC
We present a hybrid approach for GW/Bethe-Salpeter Equation (BSE) calculations of core excitation spectra, including x-ray absorption (XAS), electron energy loss spectra (EELS), and non-resonant inelastic x-ray scattering (NRIXS). The method is based
The off-mass shell scattering amplitude, satisfying the Bethe-Salpeter equation for spinless particles in Minkowski space with the ladder kernel, is computed for the first time.
Using a well-established effective interaction in a rainbow-ladder truncation model of QCD, we fix the remaining model parameter to the bottomonium ground-state spectrum in a covariant Bethe-Salpeter equation approach and find surprisingly good agree
In this work, we employ the Bethe-Salpeter (B-S) equation to investigate the spectra of free diquarks and their B-S wave functions. We find that the B-S approach can be consistently applied to study the diqaurks with two heavy quarks or one heavy and