ترغب بنشر مسار تعليمي؟ اضغط هنا

Evolution of gas disc-embedded intermediate mass ratio inspirals in the LISA band

61   0   0.0 ( 0 )
 نشر من قبل Andrea Derdzinski
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Among the potential milliHz gravitational wave (GW) sources for the upcoming space-based interferometer LISA are extreme- or intermediate-mass ratio inspirals (EMRI/IMRIs). These events involve the coalescence of supermassive black holes in the mass range $10^5 M_{odot} lesssim M lesssim 10^7 M_{odot}$ with companion BHs of much lower masses. A subset of E/IMRIs are expected to occur in the accretion discs of active galactic nuclei (AGN), where torques exerted by the disc can interfere with the inspiral and cause a phase shift in the GW waveform. Here we use a suite of two-dimensional hydrodynamical simulations with the moving-mesh code DISCO to present a systematic study of disc torques. We measure torques on an inspiraling BH and compute the corresponding waveform deviations as a function of the binary mass ratio $qequiv M_2/M_1$, the disc viscosity ($alpha$), and gas temperature (or equivalently Mach number; $mathcal{M}$). We find that the absolute value of the gas torques is within an order of magnitude of previously determined planetary migration torques, but their precise value and sign depends non-trivially on the combination of these parameters. The gas imprint is detectable by LISA for binaries embedded in AGN discs with surface densities above $Sigma_0ge10^{4-6} rm , g cm^{-2}$, depending on $q$, $alpha$ and $mathcal{M}$. Deviations are most pronounced in discs with higher viscosities, and for E/IMRIs detected at frequencies where LISA is most sensitive. Torques in colder discs exhibit a noticeable dependence on the GW-driven inspiral rate as well as strong fluctuations at late stages of the inspiral. Our results further suggest that LISA may be able to place constraints on AGN disc parameters and the physics of disc-satellite interaction.

قيم البحث

اقرأ أيضاً

The coalescence of a compact object with a $10^{4}-10^{7} {rm M_odot}$ supermassive black hole (SMBH) produces mHz gravitational waves (GWs) detectable by the future Laser Interferometer Space Antenna (LISA). If such an inspiral occurs in the accreti on disc of an active galactic nucleus (AGN), the gas torques imprint a small deviation in the GW waveform. Here we present two-dimensional hydrodynamical simulations with the moving-mesh code DISCO of a BH inspiraling at the GW rate in a binary system with a mass ratio $q!=!M_2/M_1!=!10^{-3}$, embedded in an accretion disc. We assume a locally isothermal equation of state for the gas (with Mach number $mathcal{M}=20$) and implement a standard $alpha$-prescription for its viscosity (with $alpha = 0.03$). We find disc torques on the binary that are weaker than in previous semi-analytic toy models, and are in the opposite direction: the gas disc slows down, rather than speeds up the inspiral. We compute the resulting deviations in the GW waveform, which scale linearly with the mass of the disc. The SNR of these deviations accumulates mostly at high frequencies, and becomes detectable in a 5-year LISA observation if the total phase shift exceeds a few radians. We find that this occurs if the disc surface density exceeds $Sigma_0 gtrsim 10^{2-3}rm g,cm^{-2}$, as may be the case in thin discs with near-Eddington accretion rates. Since the characteristic imprint on the GW signal is strongly dependent on disc parameters, a LISA detection of an intermediate mass ratio inspiral would probe the physics of AGN discs and migration.
172 - Pau Amaro-Seoane 2018
The detection of a gravitational capture of a stellar-mass compact object by a massive black hole (MBH) will allow us to test gravity in the strong regime. These sources form via two-body relaxation, by exchanging energy and angular momentum, and ins piral in a slow, progressive way down to the final merger. The range of frequencies is localised in the range of millihertz in the case of MBH of masses $sim 10^6,M_{odot}$, i.e. that of space-borne gravitational-wave observatories such as LISA. In this article I show that, depending on their orbital parameters, intermediate-mass ratios (IMRIs) of MBH of masses between a hundred and a few thousand have frequencies that make them detectable (i) with ground-based observatories, or (ii) with both LISA and ground-based ones such as advanced LIGO/Virgo and third generation ones, with ET as an example. The binaries have a signal-to-noise ratio large enough to ensure detection. More extreme values in their orbital parameters correspond to systems detectable only with ground-based detectors and enter the LIGO/Virgo band in particular in many different harmonics for masses up to some $2000,,M_{odot}$. I show that environmental effects are negligible, so that the source should not have this kind of complication. The accumulated phase-shift is measurable with LISA and ET, and for some cases also with LIGO, so that it is possible to recover information about the eccentricity and formation scenario. For IMRIs with a total mass $lessapprox 2000,M_{odot}$ and initial eccentricities up to $0.999$, LISA can give a warning to ground-based detectors with enough time in advance and seconds of precision. The possibility of detecting IMRIs from the ground alone or combined with space-borne observatories opens new possibilities for gravitational wave astronomy.
The intermediate mass-ratio inspiral of a stellar compact remnant into an intermediate mass black hole (IMBH) can produce a gravitational wave (GW) signal that is potentially detectable by current ground-based GW detectors (e.g., Advanced LIGO) as we ll as by planned space-based interferometers (e.g., eLISA). Here, we present results from a direct integration of the post-Newtonian $N$-body equations of motion describing stellar clusters containing an IMBH and a population of stellar-mass black holes (BHs) and solar mass stars. We take particular care to simulate the dynamics closest to the IMBH, including post-Newtonian effects up to order $2.5$. Our simulations show that the IMBH readily forms a binary with a BH companion. This binary is gradually hardened by transient 3-body or 4-body encounters, leading to frequent substitutions of the BH companion, while the binarys eccentricity experiences large amplitude oscillations due to the Lidov-Kozai resonance. We also demonstrate suppression of these resonances by the relativistic precession of the binary orbit. We find an intermediate mass-ratio inspiral in one of the 12 cluster models we evolved for $sim 100$ Myr. This cluster hosts a $100 M_odot$ IMBH embedded in a population of 32 $10M_odot$ BH and 32,000 $1M_odot$ stars. At the end of the simulation, after $sim 100$ Myr of evolution, the IMBH merges with a BH companion. The IMBH--BH binary inspiral starts in the eLISA frequency window ($gtrsim 1rm mHz$) when the binary reaches an eccentricity $1-esimeq 10^{-3}$. After $simeq 10^5$ years the binary moves into the LIGO frequency band with a negligible eccentricity. We comment on the implications for GW searches, with a possible detection within the next decade.
Abundances of light elements in dwarf stars of different ages are important constraints for stellar yields, Galactic chemical evolution and exoplanet chemical composition studies. We have measured C and N abundances and $^{12}$C/$^{13}$C ratios for a sample of 63 solar twins spanning a wide range in age, based on spectral synthesis of a comprehensive list of CH,A-X and CN,B-X features using HARPS spectra. The analysis of 55 thin disc solar twins confirms the dependences of [C/Fe] and [N/Fe] on [Fe/H]. [N/Fe] is investigated as a function of [Fe/H] and age for the first time for these stars. Our derived correlation [C/Fe]-age agrees with works for solar-type stars and solar twins, but the [N/Fe]-age correlation does not. The relations [C,N/Fe]-[Fe/H] and [C,N/Fe]-age for the solar twins lay under-solar. $^{12}$C/$^{13}$C is found correlated with [Fe/H] and seems to have decreased along the evolution of the local thin disc. Predictions from chemical evolution models for the solar vicinity corroborate the relations [C,N/Fe]-[Fe/H], $^{12}$C/$^{13}$C-age and [N/O]-[O/H], but do not for the $^{12}$C/$^{13}$C-[Fe/H] and [C/O]-[O/H] relations. The N/O ratio in the Sun is placed at the high end of the homogeneous distribution of solar twins, which suggests uniformity in the N-O budget for the formation of icy planetesimals, watery super-earths and giant planets. C and N had different nucleosynthetic origins along the thin disc evolution, as shown by the relations of [C/N], [C/O] and [N/O] against [O/H] and age. [C/N] and [C/O] are particularly observed increasing in time for solar twins younger than the Sun.
The extreme mass ratio inspiral (EMRI), defined as a stellar-mass compact object inspiraling into a supermassive black hole (SMBH), has been widely argued to be a low-frequency gravitational wave (GW) source. EMRIs providing accurate measurements of black hole mass and spin, are one of the primary interests for Laser Interferometer Space Antenna (LISA). However, it is usually believed that there are no electromagnetic (EM) counterparts to EMRIs. Here we show a new formation channel of EMRIs with tidal disruption flares as EM counterparts. In this scenario, flares can be produced from the tidal stripping of the helium (He) envelope of a massive star by an SMBH. The left compact core of the massive star will evolve into an EMRI. We find that, under certain initial eccentricity and semimajor axis, the GW frequency of the inspiral can enter LISA band within 10 $sim$ 20 years, which makes the tidal disruption flare an EM precursor to EMRI. Although the event rate is just $2times 10^{-4}~rm Gpc^{-3}yr^{-1}$, this association can not only improve the localization accuracy of LISA and help to find the host galaxy of EMRI, but also serve as a new GW standard siren for cosmology.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا