ﻻ يوجد ملخص باللغة العربية
A new experimental method of determination of equilibrium isotopic properties of substances based on Inelastic Neutron Scattering (INS) is proposed. We present mathematical formalism allowing calculation of beta-factor of single-element solids based on INS-derived Phonon Density of States (PDOS). PDOS data for nanodiamonds of widely different sizes and of macroscopic diamond were determined from Inelastic Neutron Scattering experiment. This allowed determination of heat capacities and, for the first time, b{eta}-factors for the diamond nanoparticles. We demonstrate considerable size-dependent increase of the heat capacities and decrease of the beta-factors for nanodiamonds relative to bulk diamond. Contributions of surface impurities/phases and phonon confinement to the size effects are evaluated. Applications to formation of diamond nanoparticles in nature are briefly discussed.
We measured the reduced partition function ratios for iron isotopes in goethite FeO(OH), potassium-jarosite KFe3(SO4)2(OH)6, and hydronium-jarosite (H3O)Fe3(SO4)2(OH)6, by Nuclear Resonant Inelastic X-Ray Scattering (NRIXS, also known as Nuclear Reso
In recent years, the availability of highly pure stable isotopes has made possible the investigation of the dependence of the physical properties of crystals, in particular semiconductors, on their isotopic composition. Following the investigation of
Sodium niobate (NaNbO3) exhibits most complex sequence of structural phase transitions in perovskite family and therefore provides as excellent model system for understanding the mechanism of structural phase transitions. We report temperature depend
The strongly correlated system Ho11B12 with boron sublattice Jahn-Teller instability and nanoscale electronic phase separation (dynamic charge stripes) was studied in detail by inelastic neutron scattering (INS), magnetometry and heat capacity measur
Spin waves in the the rare earth orthorferrite YFeO$_3$ have been studied by inelastic neutron scattering and analyzed with a full four-sublattice model including contributions from both the weak ferromagnetic and hidden antiferromagnetic orders. Ant