ﻻ يوجد ملخص باللغة العربية
Lack of high-precision long-term continuous photometric data for large samples of stars has prevented the large-scale exploration of pulsational variability in the OB star regime. As a result, the candidates for in-depth asteroseismic modelling remained limited to a few tens of dwarfs. The TESS nominal space mission has surveyed the southern sky, yielding continuous data of at least 27 d for hundreds of OB stars. We aim to couple TESS data in the southern sky with spectroscopy to study the variability over mass and evolution. We focus mainly on the presence of coherent pulsation modes that may or may not be present in the theoretical instability domains and unravel all frequency behaviour in the amplitude spectra of the TESS data. We compose a sample of 98 OB-type stars observed by TESS in Sectors 1-13 and with available high-resolution spectroscopy gathered by the IACOB and OWN surveys. We present the short-cadence 2-min light curves of dozens of OB-type stars, that have one or more spectra in the IACOB or OWN database. Based on these light curves and their Lomb-Scargle periodograms we perform variability classification and frequency analysis, and place the stars in the spectroscopic Hertzsprung-Russell diagram to interpret the variability in an evolutionary context. We deduce diverse origins of the variability found in all of the 98 OB stars in the TESS data. Among these we find several new variable stars, including three hybrid pulsators, three eclipsing binaries, high frequency modes in a Be star, and potential heat-driven pulsations in two Oe stars. We identify stars for which future asteroseismic modelling is possible, provided mode identification is achieved. By comparing the position of the variables to theoretical instability strips we discuss the current shortcomings in non-adiabatic pulsation theory, and the distribution of pulsators in the upper Hertzsprung-Russell diagram.
Heartbeat stars are eccentric binaries exhibiting characteristic shape of brightness changes during periastron passage caused by tidal distortion of the components. Variable tidal potential can drive tidally excited oscillations (TEOs), which are usu
The Transiting Exoplanet Survey Satellite (TESS) will provide high precision time-series photometry for millions of stars with at least a half-hour cadence. Of particular interest are the circular regions of 12-degree radius centered around the eclip
We present first results from the quantitative spectroscopic analysis of 266 Galactic O-type stars targeted by the IACOB and OWN surveys (implying the largest sample of stars of this type analyzed homogeneously). We also evaluate what is the present
Superflares on solar-type stars has been a rapidly developing field ever since the launch of $it Kepler$. Over the years, there have been several studies investigating the statistics of these explosive events. In this study, we present a statistical
Uncertainties in stellar structure and evolution theory are largest for stars undergoing core convection on the main sequence. A powerful way to calibrate the free parameters used in the theory of stellar interiors is asteroseismology, which provides