ترغب بنشر مسار تعليمي؟ اضغط هنا

Variability of OB stars from TESS southern Sectors 1-13 and high-resolution IACOB and OWN spectroscopy

70   0   0.0 ( 0 )
 نشر من قبل Siemen Burssens
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Lack of high-precision long-term continuous photometric data for large samples of stars has prevented the large-scale exploration of pulsational variability in the OB star regime. As a result, the candidates for in-depth asteroseismic modelling remained limited to a few tens of dwarfs. The TESS nominal space mission has surveyed the southern sky, yielding continuous data of at least 27 d for hundreds of OB stars. We aim to couple TESS data in the southern sky with spectroscopy to study the variability over mass and evolution. We focus mainly on the presence of coherent pulsation modes that may or may not be present in the theoretical instability domains and unravel all frequency behaviour in the amplitude spectra of the TESS data. We compose a sample of 98 OB-type stars observed by TESS in Sectors 1-13 and with available high-resolution spectroscopy gathered by the IACOB and OWN surveys. We present the short-cadence 2-min light curves of dozens of OB-type stars, that have one or more spectra in the IACOB or OWN database. Based on these light curves and their Lomb-Scargle periodograms we perform variability classification and frequency analysis, and place the stars in the spectroscopic Hertzsprung-Russell diagram to interpret the variability in an evolutionary context. We deduce diverse origins of the variability found in all of the 98 OB stars in the TESS data. Among these we find several new variable stars, including three hybrid pulsators, three eclipsing binaries, high frequency modes in a Be star, and potential heat-driven pulsations in two Oe stars. We identify stars for which future asteroseismic modelling is possible, provided mode identification is achieved. By comparing the position of the variables to theoretical instability strips we discuss the current shortcomings in non-adiabatic pulsation theory, and the distribution of pulsators in the upper Hertzsprung-Russell diagram.

قيم البحث

اقرأ أيضاً

Heartbeat stars are eccentric binaries exhibiting characteristic shape of brightness changes during periastron passage caused by tidal distortion of the components. Variable tidal potential can drive tidally excited oscillations (TEOs), which are usu ally gravity modes. Studies of heartbeat stars and TEOs open a new possibility to probe interiors of massive stars. There are only a few massive (masses of components $gtrsim 2 $M$_odot$) systems of this type known. Using TESS data from the first 16 sectors, we searched for new massive heartbeat stars and TEOs using a sample of over 300 eccentric spectroscopic binaries. We analysed TESS 2-min and 30-min cadence data. Then, we fitted Kumars analytical model to the light curves of stars showing heartbeats and performed times-series analysis of the residuals searching for TEOs and periodic intrinsic variability. We found 20 massive heartbeat systems, of which seven show TEOs. The TEOs occur at harmonics of orbital frequencies in the range between 3 and 36, with the median value equal to 9, lower than those in known Kepler systems with TEOs. The most massive system in this sample is the quadruple star HD 5980, a member of Small Magellanic Cloud. With the total mass of $sim$150 M$_{odot}$ it is the most massive system showing a heartbeat. Six stars in the sample of the new heartbeat stars are eclipsing. Comparison of the parameters derived from fitting Kumars model and from light-curve modelling shows that Kumars model does not provide reliable parameters. Finally, intrinsic pulsations of $beta$ Cep, SPB, $delta$ Sct, and $gamma$ Dor-type were found in nine heartbeat systems. This opens an interesting possibility of studies of pulsation-binarity interaction and the co-existence of forced and self-excited oscillations.
The Transiting Exoplanet Survey Satellite (TESS) will provide high precision time-series photometry for millions of stars with at least a half-hour cadence. Of particular interest are the circular regions of 12-degree radius centered around the eclip tic poles that will be observed continuously for a full year. Spectroscopic stellar parameters are desirable to characterize and select suitable targets for TESS, whether they are focused on exploring exoplanets, stellar astrophysics, or Galactic archaeology. Here, we present spectroscopic stellar parameters ($T_{rm eff}$, $log g$, [Fe/H], $v sin i$, $v_{rm micro}$) for about 16,000 dwarf and subgiant stars in TESS southern continuous viewing zone. For almost all the stars, we also present Bayesian estimates of stellar properties including distance, extinction, mass, radius, and age using theoretical isochrones. Stellar surface gravity and radius are made available for an additional set of roughly 8,500 red giants. All our target stars are in the range $10<V<13.1$. Among them, we identify and list 227 stars belonging to the Large Magellanic Cloud. The data were taken using the the High Efficiency and Resolution Multi-Element Spectrograph (HERMES, R $sim 28,000$) at the Anglo-Australian Telescope as part of the TESS-HERMES survey. Comparing our results with the TESS Input Catalog (TIC) shows that the TIC is generally efficient in separating dwarfs and giants, but it has flagged more than hundred cool dwarfs ($T_{rm eff}< 4800$ K) as giants, which ought to be high-priority targets for the exoplanet search. The catalog can be accessed via http://www.physics.usyd.edu.au/tess-hermes/ , or at MAST via https://archive.stsci.edu/prepds/tess-hermes/ .
We present first results from the quantitative spectroscopic analysis of 266 Galactic O-type stars targeted by the IACOB and OWN surveys (implying the largest sample of stars of this type analyzed homogeneously). We also evaluate what is the present situation regarding available information about distances, as provided by the Hipparcos and Gaia missions.
Superflares on solar-type stars has been a rapidly developing field ever since the launch of $it Kepler$. Over the years, there have been several studies investigating the statistics of these explosive events. In this study, we present a statistical analysis of stellar flares on solar-type stars made using photometric data in 2-min cadence from $it TESS$ of the whole southern hemisphere (sectors 1 - 13). We derive rotational periods for all stars in our sample from rotational modulations present in the lightcurve as a result of large starspot(s) on the surface. We identify 1980 stellar flares from 209 solar-type stars with energies in the range of $10^{31} - 10^{36}$erg (using the solar flare classification, this corresponds to X1 - X100,000) and conduct an analysis into their properties. We investigate the rotational phase of the flares and find no preference for any phase suggesting the flares are randomly distributed. As a benchmark, we use GOES data of solar flares to detail the close relationship between solar flares and sunspots. In addition, we also calculate approximate spot areas for each of our stars and compare this to flare number, rotational phase, and flare energy. Additionally, two of our stars were observed in the continuous viewing zone with lightcurves spanning one year, as a result, we examine the stellar variability of these stars in more detail.
Uncertainties in stellar structure and evolution theory are largest for stars undergoing core convection on the main sequence. A powerful way to calibrate the free parameters used in the theory of stellar interiors is asteroseismology, which provides direct measurements of angular momentum and element transport. We report the detection and classification of new variable O and B stars using high-precision short-cadence (2-min) photometric observations assembled by the Transiting Exoplanet Survey Satellite (TESS). In our sample of 154 O and B stars, we detect a high percentage (90%) of variability. Among these we find 23 multiperiodic pulsators, 6 eclipsing binaries, 21 rotational variables, and 25 stars with stochastic low-frequency variability. Several additional variables overlap between these categories. Our study of O and B stars not only demonstrates the high data quality achieved by TESS for optimal studies of the variability of the most massive stars in the Universe, but also represents the first step towards the selection and composition of a large sample of O and B pulsators with high potential for joint asteroseismic and spectroscopic modeling of their interior structure with unprecedented precision.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا