ترغب بنشر مسار تعليمي؟ اضغط هنا

Gemini Multi-Object Spectrograph Integral Field Unit Spectroscopy of the Double-peaked Broad Emission Line of a Red Active Galactic Nucleus

96   0   0.0 ( 0 )
 نشر من قبل Dohyeong Kim
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Galaxy mergers are expected to produce multiple supermassive black holes (SMBHs) in close-separation, but the detection of such SMBHs has been difficult. 2MASS J165939.7$+$183436 is a red active galactic nucleus (AGN) that is a prospective merging SMBH candidate owing to its merging features in Hubble Space Telescope imaging and double-peaked broad emission lines (BELs). Herein, we report a Gemini Multi-Object Spectrograph Integral Field Unit observation of a double-peaked broad H$alpha$ line of 2MASS J165939.7$+$183436. Furthermore, we confirm the existence of two BEL peaks that are kinematically separated by 3000,$rm km,s^{-1}$, with the SMBH of each BEL component weighing at $10^{8.92pm0.06},M_{rm odot}$ and $10^{7.13pm0.06},M_{rm odot}$, if they arise from independent BELs near the two SMBHs. The BEL components were not separated at $>0farcs1$; however, under several plausible assumptions regarding the fitting of each spaxel, the two components are found to be spatially separated at $0farcs085$ ($sim250$,pc). Different assumptions for the fitting can lead to a null ($< 0farcs05$) or a larger spatial separation ($sim0farcs15$). Given the uncertainty regarding the spatial separation, various models, such as the disk emitter and multiple SMBH models, are viable solutions to explain the double BEL components. These results will promote future research for finding more multiple SMBH systems in red AGNs, and higher-resolution imaging validates these different models.

قيم البحث

اقرأ أيضاً

Apart from viewing-dependent obscuration, intrinsic broad-line emission from active galactic nuclei (AGNs) follows an evolutionary sequence: Type $1 to 1.2/1.5 to 1.8/1.9 to 2$ as the accretion rate onto the central black hole is decreasing. This spe ctral evolution is controlled, at least in part, by the parameter $L_{rm bol}/M^{2/3}$, where $L_{rm bol}$ is the AGN bolometric luminosity and $M$ is the black hole mass. Both this dependence and the double-peaked profiles that emerge along the sequence arise naturally in the disk-wind scenario for the AGN broad-line region.
We study the disk emission component hidden in the single-peaked Broad Emission Lines (BELs) of Active Galactic Nuclei (AGN). We compare the observed broad lines from a sample of 90 Seyfert 1 spectra taken from the Sloan Digital Sky Survey with simul ated line profiles. We consider a two-component Broad Line Region (BLR) model where an accretion disk and a surrounding non-disk region with isotropic cloud velocities generate the simulated BEL profiles. The analysis is mainly based in measurements of the full widths (at 10%, 20% and 30% of the maximum intensity) and of the asymmetries of the line profiles. Comparing these parameters for the simulated and observed H$alpha$ broad lines, we {found} that the hidden disk emission {may} be present in BELs even if the characteristic {of two peaked line profiles is} absent. For the available sample of objects (Seyfert 1 galaxies with single-peaked BELs), our study indicates that, {in the case of the hidden disk emission in single peaked broad line profiles}, the disk inclination tends to be small (mostly $i<25^circ$) and that the contribution of the disk emission to the total flux should be smaller than the contribution of the surrounding region.
We demonstrate a novel technology that combines the power of the multi-object spectrograph with the spatial multiplex advantage of an integral field spectrograph (IFS). The Sydney-AAO Multi-object IFS (SAMI) is a prototype wide-field system at the An glo-Australian Telescope (AAT) that allows 13 imaging fibre bundles (hexabundles) to be deployed over a 1-degree diameter field of view. Each hexabundle comprises 61 lightly-fused multimode fibres with reduced cladding and yields a 75 percent filling factor. Each fibre core diameter subtends 1.6 arcseconds on the sky and each hexabundle has a field of view of 15 arcseconds diameter. The fibres are fed to the flexible AAOmega double-beam spectrograph, which can be used at a range of spectral resolutions (R=lambda/delta(lambda) ~ 1700-13000) over the optical spectrum (3700-9500A). We present the first spectroscopic results obtained with SAMI for a sample of galaxies at z~0.05. We discuss the prospects of implementing hexabundles at a much higher multiplex over wider fields of view in order to carry out spatially--resolved spectroscopic surveys of 10^4 to 10^5 galaxies.
This paper is a response to a call for white papers solicited by Gemini Observatory and its Science and Technology Advisory Committee, to help define the science case and requirements for a new Gemini instrument, envisaged to consist of a single-obje ct spectrograph at medium resolution simultaneously covering optical and near-infrared wavelengths. In this white paper we discuss the science case for an alternative new instrument, consisting instead of a multi-object, medium-resolution, high-throughput spectrograph, covering simultaneously the optical and near-infrared slices of the electromagnetic spectrum. We argue that combination of wide wavelength coverage at medium resolution with moderate multiplexing power is an innovative path that will enable the pursuit of fundamental science questions in a variety of astrophysical topics, without compromise of the science goals achievable by single-object spectroscopy on a wide baseline. We present a brief qualitative discussion of the main features of a notional hardware design that could conceivably make such an instrument viable.
The Gemini Infrared Multi-Object Spectrograph (GIRMOS) is a powerful new instrument being built to facility-class standards for the Gemini telescope. It takes advantage of the latest developments in adaptive optics and integral field spectrographs. G IRMOS will carry out simultaneous high-angular-resolution, spatially-resolved infrared ($1-2.4$ $mu$m) spectroscopy of four objects within a two-arcminute field-of-regard by taking advantage of multi-object adaptive optics. This capability does not currently exist anywhere in the world and therefore offers significant scientific gains over a very broad range of topics in astronomical research. For example, current programs for high redshift galaxies are pushing the limits of what is possible with infrared spectroscopy at $8-10$-meter class facilities by requiring up to several nights of observing time per target. Therefore, the observation of multiple objects simultaneously with adaptive optics is absolutely necessary to make effective use of telescope time and obtain statistically significant samples for high redshift science. With an expected commissioning date of 2023, GIRMOSs capabilities will also make it a key followup instrument for the James Webb Space Telescope when it is launched in 2021, as well as a true scientific and technical pathfinder for future Thirty Meter Telescope (TMT) multi-object spectroscopic instrumentation. In this paper, we will present an overview of this instruments capabilities and overall architecture. We also highlight how this instrument lays the ground work for a future TMT early-light instrument.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا