ترغب بنشر مسار تعليمي؟ اضغط هنا

Theory for quarkonium: from NRQCD factorization to soft gluon factorization

83   0   0.0 ( 0 )
 نشر من قبل Yan-Qing Ma
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We demonstrate that the recently proposed soft gluon factorization (SGF) is equivalent to the nonrelativistic QCD (NRQCD) factorization for heavy quarkonium production or decay, which means that for any given process these two factorization theories are either both valid or both violated. We use two methods to achieve this conclusion. In the first method, we apply the two factorization theories to the physical process $J/psi to e^+e^-$. Our explicit calculation shows that both SGF and NRQCD can correctly reproduce low energy physics of full QCD, and thus the two factorizations are equivalent. In the second method, by using equations of motion we successfully deduce SGF from NRQCD effective field theory. By identifying SGF with NRQCD factorization, we establish relations between the two factorization theories and prove the generalized Gremm-Kapustin relations as a by product. Comparing with the NRQCD factorization, the advantage of SGF is that it resums the series of relativistic corrections originated from kinematic effects to all powers, which gives rise to a better convergence in relativistic expansion.



قيم البحث

اقرأ أيضاً

141 - Gouranga C. Nayak 2005
We discuss factorization in heavy quarkonium production in high energy collisions using NRQCD. Infrared divergences at NNLO are not matched by conventional NRQCD matrix elements. However, we show that gauge invariance and factorization require that c onventional NRQCD production matrix elements be modified to include Wilson lines or non-abelian gauge links. With this modification NRQCD factorization for heavy quarkonium production is restored at NNLO.
We discuss heavy quarkonium production through parton fragmentation, including a review of arguments for the factorization of high-p_T particles into fragmentation functions for hadronic initial states. We investigate the further factorization of fra gmentation functions in the NRQCD formalism, and argue that this requires a modification of NRQCD octet production matrix elements to include nonabelian phases, which makes them gauge invariant. We describe the calculation of uncanceled infrared divergences in fragmentation functions that must be factorized at NNLO, and verify that they are absorbed into the new, gauge invariant matrix elements.
We study the transition of a heavy quark pair from octet to singlet color configurations at next-to-next-to-leading order (NNLO) in heavy quarkonium production. We show that the infrared singularities in this process are consistent with NRQCD factori zation to all orders in the heavy quark relative velocity v. This factorization requires the gauge-completed matrix elements that we introduced previously to prove NNLO factorization to order v ^2.
136 - Yan-Qing Ma , Kuang-Ta Chao 2017
The widely used nonrelativistic QCD (NRQCD) factorization theory now encounters some notable difficulties in describing quarkonium production. This may be due to the inadequate treatment of soft hadrons emitted in the hadronization process, which cau ses bad convergence of velocity expansion in NRQCD. In this paper, starting from QCD we propose a rigorously defined factorization approach, soft gluon factorization (SGF), to better deal with the effects of soft hadrons. After a careful velocity expansion, the SGF can be as simple as the NRQCD factorization in phenomenological studies, but has a much better convergence. The SGF may provide a new insight to understand the mechanisms of quarkonium production and decay.
61 - J.P. Ma , Z.G. Si 2005
The approach of nonrelativistic QCD(NRQCD) factorization was proposed to study inclusive production of a quarkonium. It is widely used and successful. However, a recent study of gluon fragmentation into a quarkonium at two-loop level shows that the f actorization is broken. It is suggested that the color-octet NRQCD matrix elements should be modified by adding a gauge link to restore the factorization. The modified matrix elements may have extra soft-divergences at one-loop level which the unmodified can not have, and this can lead to a violation of the universality of these matrix elements. In this letter, we examine in detail the NRQCD factorization for inclusive quarkonium production in $e^+ e^-$ annihilation at one-loop level. Our results show that the factorization can be made without the modification of NRQCD matrix elements and it can also be made for relativistic corrections. It turns out that the suggested gauge link will not lead to nonzero contributions to color-octet NRQCD matrix elements at one-loop level and at any order of $v$. Therefore the universality holds at least at one-loop level.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا