ﻻ يوجد ملخص باللغة العربية
In recent years, the lattice Boltzmann (LB) method has been widely employed to simulate boiling phenomena [A. Markus and G. Hazi, Phys. Rev. E 83, 046705 (2011); Biferale et al., Phys. Rev. Lett. 108, 104502 (2012); Li et al., Phys. Rev. E 96, 063303 (2017); Wu et al., Int. J. Heat Mass Transfer 126, 773 (2018)]. However, a very important issue still remains open, i.e., how does boiling occur in the LB simulations? For instance, the existing LB studies showed that the boiling on a hydrophobic surface begins at a lower wall superheat than that on a hydrophilic surface, which qualitatively agrees well with experimental studies, but no one has yet explained how this phenomenon appears in the LB simulations and what happened in the simulations after changing the wettability of the heating surface. In this paper, the LB boiling mechanism is revealed by analyzing boiling on a flat surface with mixed wettability and boiling on a structured surface with homogeneous wettability. Through a theoretical analysis, we demonstrate that, when the same wall superheat is applied, in the LB boiling simulations the fluid density near the heating surface decreases faster on a hydrophobic surface than that on a hydrophilic surface. Accordingly, a lower wall superheat can induce the phase transition from liquid to vapor on a hydrophobic surface than that on a hydrophilic surface. Furthermore, a similar theoretical analysis shows that the fluid density decreases fastest at concave corners in the case of a structured surface with homogeneous wettability, which explains why vapor bubbles are nucleated at concave corners in the LB simulations of boiling on structured surfaces.
When boiling occurs in a liquid flow field, the phenomenon is known as forced-convection boiling. We numerically investigate such a boiling system on a cylinder in a flow at a saturated condition. To deal with the complicated liquid-vapor phase-chang
We present numerical simulations of three-dimensional thermal convective flows in a cubic cell at high Rayleigh number using thermal lattice Boltzmann (LB) method. The thermal LB model is based on double distribution function approach, which consists
It is well-known that the original lattice Boltzmann (LB) equation deviates from the Navier-Stokes equations due to an unphysical velocity dependent viscosity. This unphysical dependency violates the Galilean invariance and limits the validation doma
Simulating inhomogeneous flows with different characteristic scales in different coordinate directions using the collide-and-stream based lattice Boltzmann methods (LBM) can be accomplished efficiently using rectangular lattice grids. We develop and
Lattice Boltzmann (LB) models used for the computation of fluid flows represented by the Navier-Stokes (NS) equations on standard lattices can lead to non-Galilean invariant (GI) viscous stress involving cubic velocity errors. This arises from the de