ترغب بنشر مسار تعليمي؟ اضغط هنا

Modelling spin waves in noncollinear antiferromagnets: spin-flop states, spin spirals, skyrmions and antiskyrmions

66   0   0.0 ( 0 )
 نشر من قبل Flaviano Jos\\'e dos Santos
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Spin waves in antiferromagnetic materials have great potential for next-generation magnonic technologies. However, their properties and their dependence on the type of ground-state antiferromagnetic structure are still open questions. Here, we investigate theoretically spin waves in one- and two-dimensional model systems with a focus on noncollinear antiferromagnetic textures such as spin spirals and skyrmions of opposite topological charges. We address in particular the nonreciprocal spin excitations recently measured in bulk antiferromagnet $alpha$--$text{Cu}_2text{V}_2text{O}_7$ utilizing inelastic neutron scattering experiments [Phys. Rev. Lett. textbf{119}, 047201 (2017)], where we help to characterize the nature of the detected spin-wave modes. Furthermore, we discuss how the Dzyaloshinskii-Moriya interaction can lift the degeneracy of the spin-wave modes in antiferromagnets, resembling the electronic Rashba splitting. We consider the spin-wave excitations in antiferromagnetic spin-spiral and skyrmion systems and discuss the features of their inelastic scattering spectra. We demonstrate that antiskyrmions can be obtained with an isotropic Dzyaloshinskii-Moriya interaction in certain antiferromagnets.



قيم البحث

اقرأ أيضاً

Optically induced spin currents have proven to be useful in spintronics applications, allowing for sub-ps all-optical control of magnetization. However, the mechanism responsible for their generation is still heavily debated. Here we use the excitati on of spin-current induced THz spin-waves in noncollinear bilayer structures to directly study optical spin-currents in the time domain. We measure a significant laser-fluence dependence of the spin-wave phase, which can quantitatively be explained assuming the spin current is proportional to the time derivative of the magnetization. Measurements of the absolute spin-wave phase, supported by theoretical calculations and micromagnetic simulations, suggest that a simple ballistic transport picture is sufficient to properly explain spin transport in our experiments and that the damping-like optical STT dominates THz spin-wave generation. Our findings suggest laser-induced demagnetization and spin-current generation share the same microscopic origin.
The classical spin-flop is the field-driven first-order reorientation transition in easy-axis antiferromagnets. A comprehensive phenomenological theory of easy-axis antiferromagnets displaying spin-flops is developed. It is shown how the hierarchy of magnetic coupling strengths in these antiferromagnets causes a strongly pronounced two-scale character in their magnetic phase structure. In contrast to the major part of the magnetic phase diagram, these antiferromagnets near the spin-flop region are described by an effective model akin to uniaxial ferromagnets. For a consistent theoretical description both higher-order anisotropy contributions and dipolar stray-fields have to be taken into account near the spin-flop. In particular, thermodynamically stable multidomain states exist in the spin-flop region, owing to the phase coexistence at this first-order transition. For this region, equilibrium spin-configurations and parameters of the multidomain states are derived as functions of the external magnetic field. The components of the magnetic susceptibility tensor are calculated for homogeneous and multidomain states in the vicinity of the spin-flop. The remarkable anomalies in these measurable quantities provide an efficient method to investigate magnetic states and to determine materials parameters in bulk and confined antiferromagnets, as well as in nanoscale synthetic antiferromagnets. The method is demonstrated for experimental data on the magnetic properties near the spin-flop region in the orthorhombic layered antiferromagnet (C_2H_5NH_3)_2CuCl_4.
Integrated optically-inspired wave-based processing is envisioned to outperform digital architectures in specific tasks, such as image processing and speech recognition. In this view, spin-waves represent a promising route due to their nanoscale wave length in the GHz frequency range and rich phenomenology. Here, we realize a versatile optically-inspired platform using spin-waves, demonstrating the wavefront engineering, focusing, and robust interference of spin-waves with nanoscale wavelength. In particular, we use magnonic nanoantennas based on tailored spin-textures for launching spatially shaped coherent wavefronts, diffraction-limited spin-wave beams, and generating robust multi-beam interference patterns, which spatially extend for several times the spin-wave wavelength. Furthermore, we show that intriguing features, such as resilience to back-reflection, naturally arise from the spin-wave nonreciprocity in synthetic antiferromagnets, preserving the high quality of the interference patterns from spurious counterpropagating modes. This work represents a fundamental step towards the realization of nanoscale optically-inspired devices based on spin-waves.
A continuum model of frustrated ferromagnets is analyzed in detail in the regime of low applied magnetic field, $H_0<1/4$, where the ground state is a spatially varying conical spiral. By changing variables to a corotating spin field, the model is re formulated as a gauged sigma model in a fixed background gauge, allowing the construction of stable isolated Skyrmions, and stable multi-Skyrmion clusters, which approach the conical ground state at spatial infinity. Owing to the spatial anisotropy induced by the ground state, these Skyrmions exhibit only discrete symmetries, and are of neither Neel nor Bloch type. These Skyrmions are continuously connected to the more familar solutions in the high field regime ($H_0>1/4$), acquiring axial symmetry in the limit $H_0rightarrow 1/4$. The propagation of small amplitude spin waves through the conical ground state is also analyzed and is found to depend strongly on both $H_0$ and propagation direction relative to the ground state. In contrast to spin waves in the high field regime ($H_0>1/4$) there is no spectral gap: waves may propagate with any angular frequency.
Spin waves have been studied experimentally and by simulations in 1000 nm side equilateral triangular Permalloy dots in the Buckle state (B, with in-plane field along the triangle base) and the Y state (Y, with in-plane field perpendicular to the bas e). The excess of exchange energy at the triangles edges creates channels that allow effective spin wave propagation along the edges inthe B state. These quasi one-dimensional spin waves emitted by the vertex magnetic charges gradually transform from propagating to standing due to interference and(as pointed out by simulations) areweakly affected by smallvariations of the aspect ratio(from equilateral to isosceles dots) or by interdot dipolar interaction present in our dot arrays. Spin waves excited in the Y state have mainly a two-dimensional character.Propagation of the spin waves along the edge states in triangular dots opens possibilities for creation of new and versatile spintronic devices.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا