ترغب بنشر مسار تعليمي؟ اضغط هنا

Damping of a micro-electromechanical oscillator in turbulent superfluid $^4$He: A novel probe of quantized vorticity in the ultra-low temperature regime

244   0   0.0 ( 0 )
 نشر من قبل Colin Barquist
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report a comprehensive investigation of the effects of quantum turbulence and quantized vorticity in superfluid $^4$He on the motion of a micro-electromechanical systems (MEMS) resonator. We find that the MEMS is uniquely sensitive to quantum turbulence present in the fluid. To generate turbulence in the fluid, a quartz tuning fork (TF) is placed in proximity to the MEMS and driven at large amplitude. We observe that at low velocity, the MEMS is damped by the turbulence, and that above a critical velocity, $v_c simeq 5,$mm,s$^{-1}$, the turbulent damping is greatly reduced. We find that above $v_c$, the damping of the MEMS is reduced further for increasing velocity, indicating a velocity dependent coupling between the surface of the MEMS and the quantized vortices constituting the turbulence. We propose a model of the interaction between vortices in the fluid and the surface of the MEMS. The sensitivity of these devices to a small number of vortices and the almost unlimited customization of MEMS open the door to a more complete understanding of the interaction between quantized vortices and oscillating structures, which in turn provides a new route for the investigation of the dynamics of single vortices.



قيم البحث

اقرأ أيضاً

The mechanical resonance properties of a micro-electro-mechanical oscillator with a gap of 1.25 $mu$m was studied in superfluid $^3$He-B at various pressures. The oscillator was driven in the linear damping regime where the damping coefficient is ind ependent of the oscillator velocity. The quality factor of the oscillator remains low ($Qapprox 80$) down to 0.1 $T_c$, 4 orders of magnitude less than the intrinsic quality factor measured in vacuum at 4 K. In addition to the Boltzmann temperature dependent contribution to the damping, a damping proportional to temperature was found to dominate at low temperatures. We propose a multiple scattering mechanism of the surface Andreev bound states to be a possible cause for the anomalous damping.
Collisions in a beam of unidirectional quantized vortex rings of nearly identical radii $R$ in superfluid $^4$He in the limit of zero temperature (0.05 K) were studied using time-of-flight spectroscopy. Reconnections between two primary rings result in secondary vortex loops of both smaller and larger radii. Discrete steps in the distribution of flight times, due to the limits on the earliest possible arrival times of secondary loops created after either one or two consecutive reconnections, are observed. The density of primary rings was found to be capped at the value $500{rm ,cm}^{-2} R^{-1}$ independent of the injected density. This is due to collisions between rings causing piling-up of many other vortex rings. Both observations are in quantitative agreement with our theory.
We calculate the effect of a heat current on transporting $^3$He dissolved in superfluid $^4$He at ultralow concentration, as will be utilized in a proposed experimental search for the electric dipole moment of the neutron (nEDM). In this experiment, a phonon wind will generated to drive (partly depolarized) $^3$He down a long pipe. In the regime of $^3$He concentrations $tilde < 10^{-9}$ and temperatures $sim 0.5$ K, the phonons comprising the heat current are kept in a flowing local equilibrium by small angle phonon-phonon scattering, while they transfer momentum to the walls via the $^4$He first viscosity. On the other hand, the phonon wind drives the $^3$He out of local equilibrium via phonon-$^3$He scattering. For temperatures below $0.5$ K, both the phonon and $^3$He mean free paths can reach the centimeter scale, and we calculate the effects on the transport coefficients. We derive the relevant transport coefficients, the phonon thermal conductivity and the $^3$He diffusion constants from the Boltzmann equation. We calculate the effect of scattering from the walls of the pipe and show that it may be characterized by the average distance from points inside the pipe to the walls. The temporal evolution of the spatial distribution of the $^3$He atoms is determined by the time dependent $^3$He diffusion equation, which describes the competition between advection by the phonon wind and $^3$He diffusion. As a consequence of the thermal diffusivity being small compared with the $^3$He diffusivity, the scale height of the final $^3$He distribution is much smaller than that of the temperature gradient. We present exact solutions of the time dependent temperature and $^3$He distributions in terms of a complete set of normal modes.
Peculiar dynamics of a free surface of the superfluid 4He has been observed experimentally with a newly established technique utilizing a number of electrically charged fine metal particles trapped electrically at the surface by Moroshkin et al. They have reported that some portion of the particles exhibit some irregular motions and suggested the existence of quantized vortices interacting with the metal particles. We have conducted calculations with the vortex filament model, which turns out to support the idea of the vortex-particle interactions. The observed anomalous metal particle motions are roughly categorized into two types; (1) circular motions with specific frequencies, and (2) quasi-linear oscillations. The former ones seem to be explained once we consider a vertical vortex filament whose edges are terminated at the bottom and at a particle trapped at the surface. Although it is not yet clear whether all the anomalous motions are due to the quantum vortices, the vortices seem to play important roles for the motions.
A micro-electro-mechanical system vibrating in its shear mode was used to study the viscosity of normal liquid $^3$He from 20mK to 770mK at 3bar, 21bar, and 29bar. The damping coefficient of the oscillator was determined by frequency sweeps through i ts resonance at each temperature. Using a slide film damping model, the viscosity of the fluid was obtained. Our viscosity values are compared with previous measurements and with calculated values from Fermi liquid theory. The crossover from the classical to the Fermi liquid regime is manifest in the temperature dependence of viscosity. In the Fermi liquid regime, the temperature dependence of viscosity changes from $T^{-1}$ to $T^{-2}$ on cooling, indicating a transition from the Stokes flow to the Couette flow regime.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا