ترغب بنشر مسار تعليمي؟ اضغط هنا

Waveguide cavity optomagnonics for broadband multimode microwave-to-optics conversion

357   0   0.0 ( 0 )
 نشر من قبل Na Zhu
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Cavity optomagnonics has emerged as a promising platform for studying coherent photon-spin interactions as well as tunable microwave-to-optical conversion. However, current implementation of cavity optomagnonics in ferrimagnetic crystals remains orders of magnitude larger in volume than state-of-the-art cavity optomechanical devices, resulting in very limited magneto-optical interaction strength. Here, we demonstrate a cavity optomagnonic device based on integrated waveguides and its application for microwave-to-optical conversion. By designing a ferrimagnetic rib waveguide to support multiple magnon modes with maximal mode overlap to the optical field, we realize a high magneto-optical cooperativity which is three orders of magnitude higher compared to previous records obtained on polished YIG spheres. Furthermore, we achieve tunable conversion of microwave photons at around 8.45 GHz to 1550 nm light with a broad conversion bandwidth as large as 16.1 MHz. The unique features of the system point to novel applications at the crossroad between quantum optics and magnonics.

قيم البحث

اقرأ أيضاً

In the recent years a series of experimental and theoretical efforts have centered around a new topic: the coherent, cavity-enhanced interaction between optical photons and solid state magnons. The resulting emerging field of Cavity Optomagnonics is of interest both at a fundamental level, providing a new platform to study light-matter interaction in confined structures, as well as for its possible relevance for hybrid quantum technologies. In this chapter I introduce the basic concepts of Cavity Optomagnonics and review some theoretical developments.
Currently, there is a growing interest in studying the coherent interaction between magnetic systems and electromagnetic radiation in a cavity, prompted partly by possible applications in hybrid quantum systems. We propose a multimode cavity optomagn onic system based on antiferromagnetic insulators, where optical photons couple coherently to the two homogeneous magnon modes of the antiferromagnet. These have frequencies typically in the THz range, a regime so far mostly unexplored in the realm of coherent interactions, and which makes antiferromagnets attractive for quantum transduction from THz to optical frequencies. We derive the theoretical model for the coupled system, and show that it presents unique characteristics. In particular, if the antiferromagnet presents hard-axis magnetic anisotropy, the optomagnonic coupling can be tuned by a magnetic field applied along the easy axis. This allows to bring a selected magnon mode into and out of a dark mode, providing an alternative for a quantum memory protocol. The dynamical features of the driven system present unusual behavior due to optically induced magnon-magnon interactions, including regions of magnon heating for a red detuned driving laser. The multimode character of the system is evident in a substructure of the optomagnonically induced transparency window.
Fiber optic communication is the backbone of our modern information society, offering high bandwidth, low loss, weight, size and cost, as well as an immunity to electromagnetic interference. Microwave photonics lends these advantages to electronic se nsing and communication systems, but - unlike the field of nonlinear optics - electro-optic devices so far require classical modulation fields whose variance is dominated by electronic or thermal noise rather than quantum fluctuations. Here we present a cavity electro-optic transceiver operating in a millikelvin environment with a mode occupancy as low as 0.025 $pm$ 0.005 noise photons. Our system is based on a lithium niobate whispering gallery mode resonator, resonantly coupled to a superconducting microwave cavity via the Pockels effect. For the highest continuous wave pump power of 1.48 mW we demonstrate bidirectional single-sideband conversion of X band microwave to C band telecom light with a total (internal) efficiency of 0.03 % (0.7 %) and an added output conversion noise of 5.5 photons. The high bandwidth of 10.7 MHz combined with the observed very slow heating rate of 1.1 noise photons s$^{-1}$ puts quantum limited pulsed microwave-optics conversion within reach. The presented device is versatile and compatible with superconducting qubits, which might open the way for fast and deterministic entanglement distribution between microwave and optical fields, for optically mediated remote entanglement of superconducting qubits, and for new multiplexed cryogenic circuit control and readout strategies.
594 - Wei Fu , Mingrui Xu , Xianwen Liu 2020
In the development of quantum microwave-to-optical (MO) converters, excessive noise induced by the parametric optical drive remains a major challenge at milli-Kelvin temperatures. Here we study the extraneous noise added to an electro-optic transduce r in its quantum ground state under an intense pulsed optical excitation. The integrated electro-optical transducer leverages the inherent Pockels effect of aluminum nitride microrings, flip-chip bonded to a superconducting resonator. Applying a pulsed optical drive with peak power exceeding the cooling power of the dilution refrigerator at its base temperature, we observe efficient bi-directional MO conversion, with near-ground state microwave thermal excitation ($bar{n}_mathrm{e}=0.09pm0.06$). Time evolution study reveals that the residual thermal excitation is dominated by the superconductor absorption of stray light scattered off the chip-fiber interface. Our results shed light on suppressing microwave noise in a cavity electro-optic system under intense optical drive, which is an essential step towards quantum state transduction between microwave and optical frequencies.
In the emerging field of cavity optomagnonics, photons are coupled coherently to magnons in solid-state systems. These new systems are promising for implementing hybrid quantum technologies. Being able to prepare Fock states in such platforms is an e ssential step towards the implementation of quantum information schemes. We propose a magnon-heralding protocol to generate a magnon Fock state by detecting an optical cavity photon. Due to the peculiarities of the optomagnonic coupling, the protocol involves two distinct cavity photon modes. Solving the quantum Langevin equations of the coupled system, we show that the temporal scale of the heralding is governed by the magnon-photon cooperativity and derive the requirements for generating high fidelity magnon Fock states. We show that the nonclassical character of the heralded state, which is imprinted in the autocorrelation of an optical read mode, is only limited by the magnon lifetime for small enough temperatures. We address the detrimental effects of nonvacuum initial states, showing that high fidelity Fock states can be achieved by actively cooling the system prior to the protocol.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا