ترغب بنشر مسار تعليمي؟ اضغط هنا

Red-Blue Point Separation for Points on a Circle

109   0   0.0 ( 0 )
 نشر من قبل Neeldhara Misra
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Given a set R of red points and a set B of blue points in the plane, the Red-Blue point separation problem asks if there are at most k lines that separate R from B, that is, each cell induced by the lines of the solution is either empty or monochromatic (containing points of only one color). A common variant of the problem is when the lines are required to be axis-parallel. The problem is known to be NP-complete for both scenarios, and W[1]-hard parameterized by k in the former setting and FPT in the latter. We demonstrate a polynomial-time algorithm for the special case when the points lie on a circle. Further, we also demonstrate the W-hardness of a related problem in the axis-parallel setting, where the question is if there are p horizontal and q vertical lines that separate R from B. The hardness here is shown in the parameter p.

قيم البحث

اقرأ أيضاً

We say that a finite set of red and blue points in the plane in general position can be $K_{1,3}$-covered if the set can be partitioned into subsets of size $4$, with $3$ points of one color and $1$ point of the other color, in such a way that, if at each subset the fourth point is connected by straight-line segments to the same-colored points, then the resulting set of all segments has no crossings. We consider the following problem: Given a set $R$ of $r$ red points and a set $B$ of $b$ blue points in the plane in general position, how many points of $Rcup B$ can be $K_{1,3}$-covered? and we prove the following results: (1) If $r=3g+h$ and $b=3h+g$, for some non-negative integers $g$ and $h$, then there are point sets $Rcup B$, like ${1,3}$-equitable sets (i.e., $r=3b$ or $b=3r$) and linearly separable sets, that can be $K_{1,3}$-covered. (2) If $r=3g+h$, $b=3h+g$ and the points in $Rcup B$ are in convex position, then at least $r+b-4$ points can be $K_{1,3}$-covered, and this bound is tight. (3) There are arbitrarily large point sets $Rcup B$ in general position, with $r=b+1$, such that at most $r+b-5$ points can be $K_{1,3}$-covered. (4) If $ble rle 3b$, then at least $frac{8}{9}(r+b-8)$ points of $Rcup B$ can be $K_{1,3}$-covered. For $r>3b$, there are too many red points and at least $r-3b$ of them will remain uncovered in any $K_{1,3}$-covering. Furthermore, in all the cases we provide efficient algorithms to compute the corresponding coverings.
We consider the online problem of packing circles into a square container. A sequence of circles has to be packed one at a time, without knowledge of the following incoming circles and without moving previously packed circles. We present an algorithm that packs any online sequence of circles with a combined area not larger than 0.350389 0.350389 of the squares area, improving the previous best value of {pi}/10 approx 0.31416; even in an offline setting, there is an upper bound of {pi}/(3 + 2 sqrt{2}) approx 0.5390. If only circles with radii of at least 0.026622 are considered, our algorithm achieves the higher value 0.375898. As a byproduct, we give an online algorithm for packing circles into a 1times b rectangle with b geq 1. This algorithm is worst case-optimal for b geq 2.36.
87 - Matthew P. Johnson 2018
Arkin et al.~cite{ArkinBCCJKMM17} recently introduced textit{partitioned pairs} network optimization problems: given a metric-weighted graph on $n$ pairs of nodes, the task is to color one node from each pair red and the other blue, and then to compu te two separate textit{network structures} or disjoint (node-covering) subgraphs of a specified sort, one on the graph induced by the red nodes and the other on the blue nodes. Three structures have been investigated by cite{ArkinBCCJKMM17}---textit{spanning trees}, textit{traveling salesperson tours}, and textit{perfect matchings}---and the three objectives to optimize for when computing such pairs of structures: textit{min-sum}, textit{min-max}, and textit{bottleneck}. We provide improved approximation guarantees and/or strengthened hardness results for these nine NP-hard problem settings.
We study the question of how to compute a point in the convex hull of an input set $S$ of $n$ points in ${mathbb R}^d$ in a differentially private manner. This question, which is trivial non-privately, turns out to be quite deep when imposing differe ntial privacy. In particular, it is known that the input points must reside on a fixed finite subset $Gsubseteq{mathbb R}^d$, and furthermore, the size of $S$ must grow with the size of $G$. Previous works focused on understanding how $n$ needs to grow with $|G|$, and showed that $n=Oleft(d^{2.5}cdot8^{log^*|G|}right)$ suffices (so $n$ does not have to grow significantly with $|G|$). However, the available constructions exhibit running time at least $|G|^{d^2}$, where typically $|G|=X^d$ for some (large) discretization parameter $X$, so the running time is in fact $Omega(X^{d^3})$. In this paper we give a differentially private algorithm that runs in $O(n^d)$ time, assuming that $n=Omega(d^4log X)$. To get this result we study and exploit some structural properties of the Tukey levels (the regions $D_{ge k}$ consisting of points whose Tukey depth is at least $k$, for $k=0,1,...$). In particular, we derive lower bounds on their volumes for point sets $S$ in general position, and develop a rather subtle mechanism for handling point sets $S$ in degenerate position (where the deep Tukey regions have zero volume). A naive approach to the construction of the Tukey regions requires $n^{O(d^2)}$ time. To reduce the cost to $O(n^d)$, we use an approximation scheme for estimating the volumes of the Tukey regions (within their affine spans in case of degeneracy), and for sampling a point from such a region, a scheme that is based on the volume estimation framework of Lovasz and Vempala (FOCS 2003) and of Cousins and Vempala (STOC 2015). Making this framework differentially private raises a set of technical challenges that we address.
Let $C$ be the unit circle in $mathbb{R}^2$. We can view $C$ as a plane graph whose vertices are all the points on $C$, and the distance between any two points on $C$ is the length of the smaller arc between them. We consider a graph augmentation pro blem on $C$, where we want to place $kgeq 1$ emph{shortcuts} on $C$ such that the diameter of the resulting graph is minimized. We analyze for each $k$ with $1leq kleq 7$ what the optimal set of shortcuts is. Interestingly, the minimum diameter one can obtain is not a strictly decreasing function of~$k$. For example, with seven shortcuts one cannot obtain a smaller diameter than with six shortcuts. Finally, we prove that the optimal diameter is $2 + Theta(1/k^{frac{2}{3}})$ for any~$k$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا