ﻻ يوجد ملخص باللغة العربية
Given a set R of red points and a set B of blue points in the plane, the Red-Blue point separation problem asks if there are at most k lines that separate R from B, that is, each cell induced by the lines of the solution is either empty or monochromatic (containing points of only one color). A common variant of the problem is when the lines are required to be axis-parallel. The problem is known to be NP-complete for both scenarios, and W[1]-hard parameterized by k in the former setting and FPT in the latter. We demonstrate a polynomial-time algorithm for the special case when the points lie on a circle. Further, we also demonstrate the W-hardness of a related problem in the axis-parallel setting, where the question is if there are p horizontal and q vertical lines that separate R from B. The hardness here is shown in the parameter p.
We say that a finite set of red and blue points in the plane in general position can be $K_{1,3}$-covered if the set can be partitioned into subsets of size $4$, with $3$ points of one color and $1$ point of the other color, in such a way that, if at
We consider the online problem of packing circles into a square container. A sequence of circles has to be packed one at a time, without knowledge of the following incoming circles and without moving previously packed circles. We present an algorithm
Arkin et al.~cite{ArkinBCCJKMM17} recently introduced textit{partitioned pairs} network optimization problems: given a metric-weighted graph on $n$ pairs of nodes, the task is to color one node from each pair red and the other blue, and then to compu
We study the question of how to compute a point in the convex hull of an input set $S$ of $n$ points in ${mathbb R}^d$ in a differentially private manner. This question, which is trivial non-privately, turns out to be quite deep when imposing differe
Let $C$ be the unit circle in $mathbb{R}^2$. We can view $C$ as a plane graph whose vertices are all the points on $C$, and the distance between any two points on $C$ is the length of the smaller arc between them. We consider a graph augmentation pro