ﻻ يوجد ملخص باللغة العربية
This paper presents observation of mechanical effects of a graphene monolayer deposited on a quartz substrate designed to operate as an extremely low-loss acoustic cavity standard at liquid-helium temperature. Resonances of this state-of-the-art cavity are used to probe the mechanical loss of the graphene film, assessed to be about $80 : 10^{-4}$ at 4K. Significant frequency shifts of positive and negative sign have been observed for many overtones of three modes of vibration. These shifts cannot be predicted by the mass-loading model widely used in the Quartz Microbalance community. Although thermo-mechanical stresses are expected in such a graphene-on-quartz composite device at low temperature due to a mismatch of expansion coefficients of both materials, it cannot fully recover the mismatch of the mass loading effect. Based on a force-frequency theory applied to the three thickness modes, to reconcile the experimental results, the mean stresses in the graphene monolayer should be of the order of 140 GPa, likely close to its tensile strength.
Cryogenic CMOS technology (cryo-CMOS) offers a scalable solution for quantum device interface fabrication. Several previous works have studied the characterization of CMOS technology at cryogenic temperatures for various process nodes. However, CMOS
In this work, magnetization dynamics is studied at low temperatures in a hybrid system that consists of thin epitaxial magnetic film coupled with superconducting planar microwave waveguide. The resonance spectrum was observed in a wide magnetic field
We propose paramagnetic semiconductors as active media for refrigeration at cryogenic temperatures by adiabatic demagnetization. The paramagnetism of impurity dopants or structural defects can provide the entropy necessary for refrigeration at cryoge
We have demonstrated that hole-type gaseous detectors, GEMs and capillary plates, can operate up to 77 K. For example, a single capillary plate can operate at gains of above 10E3 in the entire temperature interval between 300 until 77 K. The same cap
We characterize the nanosecond pulse switching performance of the three-terminal magnetic tunnel junctions (MTJs), driven by the spin Hall effect (SHE) in the channel, at a cryogenic temperature of 3 K. The SHE-MTJ devices exhibit reasonable magnetic