ﻻ يوجد ملخص باللغة العربية
Tuning the electric properties of crystalline solids is at the heart of material science and electronics. Generating the electric field-effect via an external voltage is a clean, continuous and systematic method. Here, utilizing the unique electric dipole locking in van der Waals (vdW) ferroelectric alpha-In2Se3, we report a new approach to establish the electric gating effect, where the electrostatic doping in the out-of-plane direction is induced and controlled by an in-plane voltage. With the vertical vdW heterostructure of ultrathin alpha-In2Se3 and MoS2, we validate an in-plane voltage gated coplanar field-effect transistor (CP-FET) with distinguished and retentive on/off ratio. Our results demonstrate unprecedented electric control of ferroelectricity, which paves the way for integrating two-dimensional (2D) ferroelectric into novel nanoelectronic devices with broad applications.
Ferroelectric semiconductor field effect transistors (FeSmFETs), which employ ferroelectric semiconducting thin crystals of {alpha}-In2Se3 as the channel material as opposed to the gate dielectric in conventional ferroelectric FETs (FeFETs) were prep
Recent experiments on layered {alpha}-In2Se3 have confirmed its room-temperature ferroelectricity under ambient condition. This observation renders {alpha}-In2Se3 an excellent platform for developing two-dimensional (2D) layered-material based electr
Equilibrium spin-current is calculated in a quasi-two-dimensional electron gas with finite thickness under in-plane magnetic field and in the presence of Rashba- and Dresselhaus spin-orbit interactions. The transverse confinement is modeled by means
Nanoscaled room-temperature ferroelectricity is ideal for developing advanced non-volatile high-density memories. However, reaching the thin film limit in conventional ferroelectrics is a long-standing challenge due to the possible critical thickness
We explore the second order bilinear magnetoelectric resistance (BMER) effect in the d-electron-based two-dimensional electron gas (2DEG) at the SrTiO3 (111) surface. We find an evidence of a spin-split band structure with the archetypal spin-momentu