ﻻ يوجد ملخص باللغة العربية
We introduce a modeling tool which can evolve a set of 3D objects in a functionality-aware manner. Our goal is for the evolution to generate large and diverse sets of plausible 3D objects for data augmentation, constrained modeling, as well as open-ended exploration to possibly inspire new designs. Starting with an initial population of 3D objects belonging to one or more functional categories, we evolve the shapes through part recombination to produce generations of hybrids or crossbreeds between parents from the heterogeneous shape collection. Evolutionary selection of offsprings is guided both by a functional plausibility score derived from functionality analysis of shapes in the initial population and user preference, as in a design gallery. Since cross-category hybridization may result in offsprings not belonging to any of the known functional categories, we develop a means for functionality partial matching to evaluate functional plausibility on partial shapes. We show a variety of plausible hybrid shapes generated by our functionality-aware model evolution, which can complement existing datasets as training data and boost the performance of contemporary data-driven segmentation schemes, especially in challenging cases. Our tool supports constrained modeling, allowing users to restrict or steer the model evolution with functionality labels. At the same time, unexpected yet functional object prototypes can emerge during open-ended exploration owing to structure breaking when evolving a heterogeneous collection.
Sequential assembly with geometric primitives has drawn attention in robotics and 3D vision since it yields a practical blueprint to construct a target shape. However, due to its combinatorial property, a greedy method falls short of generating a seq
This work focuses on the analysis that whether 3D face models can be learned from only the speech inputs of speakers. Previous works for cross-modal face synthesis study image generation from voices. However, image synthesis includes variations such
We present a method of generating high resolution 3D shapes from natural language descriptions. To achieve this goal, we propose two steps that generating low resolution shapes which roughly reflect texts and generating high resolution shapes which r
In order to generate novel 3D shapes with machine learning, one must allow for interpolation. The typical approach for incorporating this creative process is to interpolate in a learned latent space so as to avoid the problem of generating unrealisti
A popular way to create detailed yet easily controllable 3D shapes is via procedural modeling, i.e. generating geometry using programs. Such programs consist of a series of instructions along with their associated parameter values. To fully realize t