ﻻ يوجد ملخص باللغة العربية
In a class of piecewise-constant image segmentation models, we propose to incorporate a weighted difference of anisotropic and isotropic total variation (AITV) to regularize the partition boundaries in an image. In particular, we replace the total variation regularization in the Chan-Vese segmentation model and a fuzzy region competition model by the proposed AITV. To deal with the nonconvex nature of AITV, we apply the difference-of-convex algorithm (DCA), in which the subproblems can be minimized by the primal-dual hybrid gradient method with linesearch. The convergence of the DCA scheme is analyzed. In addition, a generalization to color image segmentation is discussed. In the numerical experiments, we compare the proposed models with the classic convex approaches and the two-stage segmentation methods (smoothing and then thresholding) on various images, showing that our models are effective in image segmentation and robust with respect to impulsive noises.
In this paper, we propose a regularization technique for noisy-image super-resolution and image denoising. Total variation (TV) regularization is adopted in many image processing applications to preserve the local smoothness. However, TV prior is pro
Domain adaptation (DA) has drawn high interests for its capacity to adapt a model trained on labeled source data to perform well on unlabeled or weakly labeled target data from a different domain. Most common DA techniques require the concurrent acce
Quantitative image analysis often depends on accurate classification of pixels through a segmentation process. However, imaging artifacts such as the partial volume effect and sensor noise complicate the classification process. These effects increase
The Ambrosio-Tortorelli functional is a phase-field approximation of the Mumford-Shah functional that has been widely used for image segmentation. The approximation has the advantages of being easy to implement, maintaining the segmentation ability,
In the past decade, sparsity-driven regularization has led to significant improvements in image reconstruction. Traditional regularizers, such as total variation (TV), rely on analytical models of sparsity. However, increasingly the field is moving t