ﻻ يوجد ملخص باللغة العربية
We theoretically demonstrate that dc electron flow across the junction of two-dimensional electron systems leads to excitation of edge magnetoplasmons. The threshold current for such plasmon excitation does not depend on contact effects and approaches zero for ballistic electron systems, which makes a strong distinction from the well-known Dyakonov-Shur and Cerenkov-type instabilities. We estimate the competing plasmon energy gain from dc current and loss due to electron scattering. We show that plasmon self excitation is feasible in GaAs-based heterostructures at $Tlesssim 200$ K and magnetic fields $B lesssim 10$ T.
In this paper we show that graphene surface plasmons can be excited when an electromagnetic wave packet impinges on a single metal slit covered with graphene. The excitation of the plasmons localized over the slit is revealed by characteristic peaks
Diffraction of light at lateral inhomogenities is a central process in the near-field studies of nanoscale phenomena, especially the propagation of surface waves. Theoretical description of this process is extremely challenging due to breakdown of pl
Leakage-radiation microscopy of a thin gold film demonstrates the ability of an ensemble of fluorescent diamond nanoparticles attached onto the apex of an optical tip to serve as an efficient near-field surface-plasmon polariton launcher. The impleme
Plasmons are usually described in terms of macroscopic quantities such as electric fields and currents. However as fundamental excitations of metals they are also quantum objects with internal structure. We demonstrate that this can induce an intrins
I theoretically investigate the response of bulk semiconductors to excitation by twisted light below the energy bandgap. To this end, I modify a well-known model of light-semiconductor interaction to account for the conservation of the lights momentu