ﻻ يوجد ملخص باللغة العربية
In this paper, we estimate the cross-correlation power spectra between the Planck 2018 cosmic microwave background (CMB) temperature anisotropy map and the unresolved $gamma$-ray background (UGRB) from the 9-years Fermi-Large Area Telescope (LAT) data. In this analysis, we use up to nine energy bins over a wide energy range of [0.631, 1000] GeV from the Fermi-LAT UGRB data. Firstly, we find that the Fermi data with the energy ranges [1.202, 2.290] GeV and [17.38, 36.31] GeV show the positive evidence for the Integrated Sachs-Wolfe (ISW) effect at $1.8sigma$ confidence level, and the significance would be increased to $2.7sigma$ when using these two energy bins together. Secondly, we apply the single power-law model to normalize the amplitude and use all the nine Fermi energy bins to measure the significance of the ISW effect, we obtained ${rm A_{amp}}=0.95 pm 0.53$ ($68%$ C.L.). For the robustness test, we implement a null hypothesis by randomizing the Fermi mock maps of nine energy bins and obtain the non-detection of ISW effect, which confirms that the ISW signal comes from the Fermi-LAT diffuse $gamma$-ray data and is consistent with the standard $Lambda$CDM model prediction essentially. We use a cross-correlation coefficient to show the relation between different energy bins. Furthermore, we vary the cut ranges $|b|$ of galactic plane on the mask of Fermi map and carefully check the consequent influence on the ISW signal detection.
We present a map of the Cosmic Microwave Background (CMB) anisotropies induced by the late Integrated Sachs Wolfe effect. The map is constructed by combining the information of the WMAP 7-yr CMB data and the NRAO VLA Sky Survey (NVSS) through a linea
Based on CMB maps from the 2013 Planck Mission data release, this paper presents the detection of the ISW effect, i.e., the correlation between the CMB and large-scale evolving gravitational potentials. The significance of detection ranges from 2 to
We study the late-time Integrated Sachs-Wolfe (ISW) effect in $f(R)$ gravity using N-body simulations. In the $f(R)$ model under study, the linear growth rate is larger than that in general relativity (GR). This slows down the decay of the cosmic pot
This paper presents a study of the ISW effect from the Planck 2015 temperature and polarization data release. The CMB is cross-correlated with different LSS tracers: the NVSS, SDSS and WISE catalogues, and the Planck 2015 lensing map. This cross-corr
Cosmic structures leave an imprint on the microwave background radiation through the integrated Sachs-Wolfe effect. We construct a template map of the linear signal using the SDSS-III Baryon Acoustic Oscillation Survey at redshift 0.43 < z < 0.65. We