ترغب بنشر مسار تعليمي؟ اضغط هنا

Parity of Chern numbers in the Kitaev honeycomb model and the sixteenfold way

125   0   0.0 ( 0 )
 نشر من قبل Julien Vidal
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In two dimensions, topological phases of free Majorana fermions coupled to a $mathbb{Z}_2$ gauge field are known to be classified according to the Chern number $ u in mathbb{Z}$. Its value mod 16 specifies the type of anyonic excitations. In this paper, we investigate triangular vortex configurations (and their dual) in the Kitaev honeycomb model and show that fourteen of these sixteen phases can be obtained by adding a time-reversal symmetry-breaking term. Missing phases are $ u=pm 7$. More generally, we prove that any periodic vortex configuration with an odd number of vortices per geometric unit cell can only host even Chern numbers whereas odd Chern numbers can be found in other cases.



قيم البحث

اقرأ أيضاً

It is widely accepted that topological superconductors can only have an effective interpretation in terms of curved geometry rather than gauge fields due to their charge neutrality. This approach is commonly employed in order to investigate their pro perties, such as the behaviour of their energy currents. Nevertheless, it is not known how accurately curved geometry can describe actual microscopic models. Here, we demonstrate that the low-energy properties of the Kitaev honeycomb lattice model, a topological superconductor that supports localised Majorana zero modes at its vortex excitations, are faithfully described in terms of Riemann-Cartan geometry. In particular, we show analytically that the continuum limit of the model is given in terms of the Majorana version of the Dirac Hamiltonian coupled to both curvature and torsion. We numerically establish the accuracy of the geometric description for a wide variety of couplings of the microscopic model. Our work opens up the opportunity to accurately predict dynamical properties of the Kitaev model from its effective geometric description.
We study finite temperature topological phase transitions of the Kitaevs spin honeycomb model in the vortex-free sector with the use of the recently introduced mean Uhlmann curvature. We employ an appropriate Fermionisation procedure to study the sys tem as a two-band p-wave superconductor described by a BdG Hamiltonian. This allows to study relevant quantities such as Berry and mean Uhlmann curvatures in a simple setting. More specifically, we consider the spin honeycomb in the presence of an external magnetic field breaking time reversal symmetry. The introduction of such an external perturbation opens a gap in the phase of the system characterised by non-Abelian statistics, and makes the model to belong to a symmetry protected class, so that the Uhmann number can be analysed. We first consider the Berry curvature on a particular evolution line over the phase diagram. The mean Uhlmann curvature and the Uhlmann number are then analysed considering the system to be in a Gibbs state at finite temperature. Then, we show that the mean Uhlmann curvature describes a cross-over effect of the phases at high temperature. We also find an interesting nonmonotonic behaviour of the Uhlmann number as a function of the temperature in the trivial phase, which is due to the partial filling of the conduction band around Dirac points.
In this work we investigate whether the Kitaev honeycomb model can serve as a starting point to realize the intriguing physics of the Sachdev-Ye-Kitaev model. The starting point is to strain the system which leads to flat bands reminiscent of Landau levels, thereby quenching the kinetic energy. The presence of weak residual perturbations, such as Heisenberg interactions and the $gamma$-term, creates effective interactions between the Majorana modes when projected into the flux-free sector. Taking into account a disordered boundary results in an interaction that is effectively random. While we find that in a strained nearest-neighbor Kitaev honeycomb model it is unlikely to find the Sachdev-Ye-Kitaev model, it appears possible to realize a bipartite variant with similar properties. We furthermore argue that next-nearest-neighbor terms can lead to actual Sachdev-Ye-Kitaev physics, if large enough.
Paramagnetic impurities in a quantum spin-liquid can result in Kondo effects with highly unusual properties. We have studied the effect of locally exchange-coupling a paramagnetic impurity with the spin-1/2 honeycomb Kitaev model in its gapless spin- liquid phase. The (impurity) scaling equations are found to be insensitive to the sign of the coupling. The weak and strong coupling fixed points are stable, with the latter corresponding to a noninteracting vacancy and an interacting, spin-1 defect for the antiferromagnetic and ferromagnetic cases respectively. The ground state in the strong coupling limit in both cases has a nontrivial topology associated with a finite Z2 flux at the impurity site. For the antiferromagnetic case, this result can be obtained straightforwardly owing to the integrability of the Kitaev model with a vacancy. The strong-coupling limit of the ferromagnetic case is however nonintegrable, and we address this problem through exact-diagonalization calculations with finite Kitaev fragments. Our exact diagonalization calculations indicate that that the weak to strong coupling transition and the topological phase transition occur rather close to each other and are possibly coincident. We also find an intriguing similarity between the magnetic response of the defect and the impurity susceptibility in the two-channel Kondo problem.
We analyse the Kitaev honeycomb model, by means of the Berry curvature with respect to Hamiltonian parameters. We concentrate on the ground-state vortex-free sector, which allows us to exploit an appropriate Fermionisation technique. The parameter sp ace includes a time-reversal breaking term which provides an analytical headway to study the curvature in phases in which it would otherwise vanish. The curvature is then analysed in the limit in which the time-reversal-symmetry-breaking perturbation vanishes. This provides remarkable information about the topological phase transitions of the model. A non-critical behaviour is found in the Berry curvature itself, which shows a distinctive behaviour in the different phases. The analysis of the first derivative shows a critical behaviour around the transition point.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا